# -*- coding: utf-8 -*-

# This is a report using the data from IQAASL.
# IQAASL was a project funded by the Swiss Confederation
# It produces a summary of litter survey results for a defined region.
# These charts serve as the models for the development of plagespropres.ch
# The data is gathered by volunteers.
# Please remember all copyrights apply, please give credit when applicable
# The repo is maintained by the community effective January 01, 2022
# There is ample opportunity to contribute, learn and teach
# contact dev@hammerdirt.ch

# Dies ist ein Bericht, der die Daten von IQAASL verwendet.
# IQAASL war ein von der Schweizerischen Eidgenossenschaft finanziertes Projekt.
# Es erstellt eine Zusammenfassung der Ergebnisse der Littering-Umfrage für eine bestimmte Region.
# Diese Grafiken dienten als Vorlage für die Entwicklung von plagespropres.ch.
# Die Daten werden von Freiwilligen gesammelt.
# Bitte denken Sie daran, dass alle Copyrights gelten, bitte geben Sie den Namen an, wenn zutreffend.
# Das Repo wird ab dem 01. Januar 2022 von der Community gepflegt.
# Es gibt reichlich Gelegenheit, etwas beizutragen, zu lernen und zu lehren.
# Kontakt dev@hammerdirt.ch

# Il s'agit d'un rapport utilisant les données de IQAASL.
# IQAASL était un projet financé par la Confédération suisse.
# Il produit un résumé des résultats de l'enquête sur les déchets sauvages pour une région définie.
# Ces tableaux ont servi de modèles pour le développement de plagespropres.ch
# Les données sont recueillies par des bénévoles.
# N'oubliez pas que tous les droits d'auteur s'appliquent, veuillez indiquer le crédit lorsque cela est possible.
# Le dépôt est maintenu par la communauté à partir du 1er janvier 2022.
# Il y a de nombreuses possibilités de contribuer, d'apprendre et d'enseigner.
# contact dev@hammerdirt.ch

# sys, file and nav packages:
import datetime as dt

# math packages:
import pandas as pd
import numpy as np
from scipy import stats
from statsmodels.distributions.empirical_distribution import ECDF

# charting:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib import ticker
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns

# home brew utitilties
import resources.chart_kwargs as ck
import resources.sr_ut as sut

# images and display
from IPython.display import Markdown as md

# set some parameters:
start_date = "2020-03-01"
end_date ="2021-05-31"
start_end = [start_date, end_date]
a_fail_rate = 50
unit_label = "p/100m"
a_color = "saddlebrown"

# colors for gradients
cmap2 = ck.cmap2
colors_palette = ck.colors_palette

# set the maps
bassin_map = "resources/maps/walensee_scaled.jpeg"

# top level aggregation
top = "All survey areas"

# define the feature level and components
this_feature = {'slug':'walensee', 'name':"Walensee", 'level':'water_name_slug'}
this_level = 'city'
this_bassin = "linth"
bassin_label ="Linth survey area"

lakes_of_interest = [ 'walensee' ]
# explanatory variables:
luse_exp = ["% buildings", "% recreation", "% agg", "% woods", "streets km", "intersects"]

# common aggregations
agg_pcs_quantity = {unit_label:"sum", "quantity":"sum"}
agg_pcs_median = {unit_label:"median", "quantity":"sum"}

# aggregation of dimensional data
agg_dims = {"total_w":"sum", "mac_plast_w":"sum", "area":"sum", "length":"sum"}


# columns needed
use_these_cols = ["loc_date" ,
                  "% to buildings",
                  "% to trans", 
                  "% to recreation",
                  "% to agg",
                  "% to woods",
                  "population",
                  this_level,
                  "streets km",
                  "intersects",
                  "length",
                  "groupname",
                  "code"
                 ]

# get your data:
dfBeaches = pd.read_csv("resources/beaches_with_land_use_rates.csv")
dfCodes = pd.read_csv("resources/codes_with_group_names_2015.csv")
dfDims = pd.read_csv("resources/corrected_dims.csv")

# set the index of the beach data to location slug
dfBeaches.set_index("slug", inplace=True)

# make a map to city names
city_map = dfBeaches.city

# map water_name_slug to water_name
wname_wname = dfBeaches[["water_name_slug","water_name"]].reset_index(drop=True).drop_duplicates().set_index("water_name_slug")

dfCodes.set_index("code", inplace=True)

codes_to_change = [
    ["G74", "description", "Insulation foams"],
    ["G940", "description", "Foamed EVA for crafts and sports"],
    ["G96", "description", "Sanitary-pads/tampons, applicators"],
    ["G178", "description", "Metal bottle caps and lids"],
    ["G82", "description", "Expanded foams 2.5cm - 50cm"],
    ["G81", "description", "Expanded foams .5cm - 2.5cm"],
    ["G117", "description", "Expanded foams < 5mm"],
    ["G75", "description", "Plastic/foamed polystyrene 0 - 2.5cm"],
    ["G76", "description", "Plastic/foamed polystyrene 2.5cm - 50cm"],
    ["G24", "description", "Plastic lid rings"],
    ["G33", "description", "Lids for togo drinks plastic"],
    ["G3", "description", "Plastic bags, carier bags"],
    ["G204", "description", "Bricks, pipes not plastic"],
    ["G904", "description", "Plastic fireworks"],
    ["G211", "description", "Swabs, bandaging, medical"],
]

for x in codes_to_change:
    dfCodes = sut.shorten_the_value(x, dfCodes)

# the surveyor designated the object as aluminum instead of metal
dfCodes.loc["G708", "material"] = "Metal"

# make a map to the code descriptions
code_description_map = dfCodes.description

# make a map to the code materials
code_material_map = dfCodes.material

12. Walensee

Below: Map of survey locations March 2020 - May 2021. Marker diameter = the mean survey result in pieces of litter per 100 meters (p/100m).

_images/walensee_3_0.png

12.1. Sample locations

# this is the data before the expanded foams and fragmented plastics are aggregated to Gfrags and Gfoams
before_agg = pd.read_csv("resources/checked_before_agg_sdata_eos_2020_21.csv")

# this is the aggregated survey data that is being used
# a_data is all the data in the survey period
a_data = pd.read_csv(F"resources/checked_sdata_eos_2020_21.csv")
a_data["date"] = pd.to_datetime(a_data.date)

a_data.rename(columns={"% to agg":"% ag", "% to recreation": "% recreation", "% to woods":"% woods", "% to buildings":"% buildings"}, inplace=True)
luse_exp = ["% buildings", "% recreation", "% ag", "% woods", "streets km", "intersects"]

fd = sut.feature_data(a_data, this_feature["level"], these_features=lakes_of_interest)

# cumulative statistics for each code
code_totals = sut.the_aggregated_object_values(fd, agg=agg_pcs_median, description_map=code_description_map, material_map=code_material_map)    

# daily survey totals
dt_all = fd.groupby(["loc_date","location",this_level, "date"], as_index=False).agg(agg_pcs_quantity )

# the materials table
fd_mat_totals = sut.the_ratio_object_to_total(code_totals)

# summary statistics, nsamples, nmunicipalities, names of citys, population
t = sut.make_table_values(fd, col_nunique=["location", "loc_date", "city"], col_sum=["quantity"], col_median=[])

# make a map to the population values for each survey location/city
fd_pop_map = dfBeaches.loc[fd.location.unique()][["city", "population"]].copy()
fd_pop_map.drop_duplicates(inplace=True)

# update t with the population data
t.update(sut.make_table_values(fd_pop_map, col_nunique=["city"], col_sum=["population"], col_median=[]))

# update t with the list of locations from fd
t.update({"locations":fd.location.unique()})

# join the strings into comma separated list
obj_string = "{:,}".format(t["quantity"])
surv_string = "{:,}".format(t["loc_date"])
pop_string = "{:,}".format(int(t["population"]))

# make strings
date_quantity_context = F"For the period between {start_date[:-3]} and {end_date[:-3]}, a total of {obj_string } objects were removed and identified over the course of {surv_string} surveys."
geo_context = F"The {this_feature['name']} results include {t['location']} different locations in {t['city']} different municipalities with a combined population of approximately {pop_string}."
munis_joined = ", ".join(sorted(fd_pop_map["city"]))

# put that all together:
lake_string = F"""
{date_quantity_context} {geo_context }

*{this_feature["name"]} municipalities:*\n\n>{munis_joined}
"""
md(lake_string)

For the period between 2020-03 and 2021-05, a total of 3,694 objects were removed and identified over the course of 31 surveys. The Walensee results include 9 different locations in 4 different municipalities with a combined population of approximately 28,823.

Walensee municipalities:

Glarus Nord, Quarten, Walenstadt, Weesen

12.1.1. Cumulative totals by municipality

dims_parameters = dict(this_level=this_level, 
                       locations=fd.location.unique(), 
                       start_end=start_end, 
                       city_map=city_map, 
                       agg_dims=agg_dims)

dims_table = sut.gather_dimensional_data(dfDims, **dims_parameters)

# a map of total quantity for each component
q_map = fd.groupby(this_level).quantity.sum()

# assgin the quantity and sample numbers to the dims table
for name in dims_table.index:
    dims_table.loc[name, "samples"] = fd[fd[this_level] == name].loc_date.nunique()
    dims_table.loc[name, "quantity"] = q_map[name]

# make a total column for the top feature data, the sum of all the components
dims_table.loc[this_feature["name"]]= dims_table.sum(numeric_only=True, axis=0)

# change the column names to user friendly syle
dims_table.rename(columns=sut.update_dictionary(sut.dims_table_columns), inplace=True)

# format the numercial data
dims_table.sort_values(by=["items"], ascending=False, inplace=True)

# change to formatted strings
dims_table["plastic kg"] = dims_table["plastic kg"]/1000
dims_table[["m²", "meters", "samples", "items"]] = dims_table[["m²", "meters", "samples", "items"]].applymap(lambda x: "{:,}".format(int(x)))
dims_table[["plastic kg", "total kg"]] = dims_table[["plastic kg", "total kg"]].applymap(lambda x: "{:.2f}".format(x))

# figure caption
agg_caption = F"""
*__Below:__ The cumulative weights and measures for {this_feature["name"]} and municipalities*
"""
md(agg_caption)

Below: The cumulative weights and measures for Walensee and municipalities

# make table
data = dims_table.reset_index()
colLabels = data.columns

fig, ax = plt.subplots(figsize=(len(colLabels)*2,len(data)*.7))

sut.hide_spines_ticks_grids(ax)
table_one = sut.make_a_table(ax, data.values, colLabels=colLabels, colWidths=[.28, *[.12]*6], a_color="saddlebrown", )
table_one.get_celld()[(0,0)].get_text().set_text(" ")

plt.show()
plt.tight_layout()
plt.close()
_images/walensee_8_0.png

12.1.2. Distribution of Survey results

# the feature surveys to chart
fd_dindex = dt_all.set_index("date")

# all the other surveys
ots = dict(level_to_exclude=this_feature["level"], components_to_exclude=fd[this_feature["level"]].unique())
dts_date = sut.the_other_surveys(a_data, **ots)

# group the outher surveys by date and total pcs_m
ots_params = dict(agg_this = {unit_label:"sum"}, these_columns = ["loc_date","date"])
dts_date = sut.group_these_columns(dts_date, **ots_params)

# get the monthly or quarterly results for the feature
resample_plot, rate = sut.quarterly_or_monthly_values(fd_dindex , this_feature["name"], vals=unit_label, quarterly=["ticino"])    

# scale the chart as needed to accomodate for extreme values
y_lim = 98
y_limit = np.percentile(dts_date[unit_label], y_lim)

# label for the chart that alerts to the scale
not_included = F"Values greater than {round(y_limit, 1)}{unit_label} not shown."

# figure caption
chart_notes = F"""
*__Left:__ {this_feature['name']}, {start_date[:7]} through {end_date[:7]}, n={t["loc_date"]}. {not_included} __Right:__ {this_feature['name']} empirical cumulative distribution of survey results.*
"""
md(chart_notes )

Left: Walensee, 2020-03 through 2021-05, n=31. Values greater than 2368.3p/100m not shown. Right: Walensee empirical cumulative distribution of survey results.

# months locator, can be confusing
# https://matplotlib.org/stable/api/dates_api.html
# months = mdates.MonthLocator(interval=1)
months_fmt = mdates.DateFormatter("%b")
days = mdates.DayLocator(interval=7)
sns.set_style("whitegrid")

fig, axs = plt.subplots(1,2, figsize=(10,5))

# the survey totals by day
ax = axs[0]

# feature surveys
sns.scatterplot(data=dts_date, x=dts_date.index, y=unit_label, label=top, color="black", alpha=0.4,  ax=ax)
# all other surveys
sns.scatterplot(data=fd_dindex, x=fd_dindex.index, y=unit_label, label=this_feature["name"], color="red", s=34, ec="white", ax=ax)

# monthly or quaterly plot
sns.lineplot(data=resample_plot, x=resample_plot.index, y=resample_plot, label=F"{this_feature['name']}: {rate} median", color="magenta", ax=ax)

ax.set_ylim(0,y_limit )
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.set_xlabel("")
ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)
ax.legend()

# the cumlative distributions:
axtwo = axs[1]

# the feature of interest
feature_ecd = ECDF(dt_all[unit_label].values)    
sns.lineplot(x=feature_ecd.x, y=feature_ecd.y, color="darkblue", ax=axtwo, label=this_feature["name"])

# the other features
other_features = ECDF(dts_date[unit_label].values)
sns.lineplot(x=other_features.x, y=other_features.y, color="magenta", label=top, linewidth=1, ax=axtwo)

axtwo.set_xlabel(unit_label, **ck.xlab_k14)
axtwo.set_ylabel("Ratio of samples", **ck.xlab_k14)

plt.tight_layout()
plt.show()
_images/walensee_11_0.png

12.1.3. Summary data and material types

Left: Walensee summary of survey totals. Right: Walensee material type and percent of total

# get the basic statistics from pd.describe
cs = dt_all[unit_label].describe().round(2)

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

fd_mat_totals = sut.fmt_pct_of_total(fd_mat_totals)
fd_mat_totals = sut.make_string_format(fd_mat_totals)

# applly new column names for printing
cols_to_use = {"material":"Material","quantity":"Quantity", "% of total":"% of total"}
fd_mat_t = fd_mat_totals[cols_to_use.keys()].values

# make tables
fig, axs = plt.subplots(1,2, figsize=(8,6))

# summary table
# names for the table columns
a_col = [this_feature["name"], "total"]

axone = axs[0]
sut.hide_spines_ticks_grids(axone)

table_two = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_two.get_celld()[(0,0)].get_text().set_text(" ")

# material table
axtwo = axs[1]
axtwo.set_xlabel(" ")
sut.hide_spines_ticks_grids(axtwo)

table_three = sut.make_a_table(axtwo, fd_mat_t,  colLabels=list(cols_to_use.values()), colWidths=[.4, .3,.3],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_three.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.subplots_adjust(wspace=0.2)
plt.show()
_images/walensee_14_0.png

12.2. The most common objects

The most common objects are the ten most abundant by quantity AND/OR objects identified in at least 50% of all surveys.

# the top ten by quantity
most_abundant = code_totals.sort_values(by="quantity", ascending=False)[:10]

# the most common
most_common = code_totals[code_totals["fail rate"] >= a_fail_rate].sort_values(by="quantity", ascending=False)

# merge with most_common and drop duplicates
m_common = pd.concat([most_abundant, most_common]).drop_duplicates()

# get percent of total
m_common_percent_of_total = m_common.quantity.sum()/code_totals.quantity.sum()

# figure caption
rb_string = F"""
*__Below:__ {this_feature['name']} most common objects: fail rate >/= {a_fail_rate}%  and/or top ten by quantity. Combined, the most abundant objects represent {int(m_common_percent_of_total*100)}% of all objects found. 
Note : {unit_label} = median survey value.*
"""
md(rb_string)

Below: Walensee most common objects: fail rate >/= 50% and/or top ten by quantity. Combined, the most abundant objects represent 75% of all objects found. Note : p/100m = median survey value.

# format values for table
m_common["item"] = m_common.index.map(lambda x: code_description_map.loc[x])
m_common["% of total"] = m_common["% of total"].map(lambda x: F"{x}%")
m_common["quantity"] = m_common.quantity.map(lambda x: "{:,}".format(x))
m_common["fail rate"] = m_common["fail rate"].map(lambda x: F"{x}%")
m_common[unit_label] = m_common[unit_label].map(lambda x: F"{round(x,1)}")

# final table data
cols_to_use = {"item":"Item","quantity":"Quantity", "% of total":"% of total", "fail rate":"Fail rate", unit_label:unit_label}
all_survey_areas = m_common[cols_to_use.keys()].values

colWidths=[.52, .12, .12, .12, .12]
bbox=[0,0,1,1],
kwargs = {"loc":"lower center"}
colLabels=list(cols_to_use.values())
figsize=(len(colLabels)*2,len(all_survey_areas)*.7)

fig, axs = plt.subplots(figsize=figsize)

sut.hide_spines_ticks_grids(axs)

table_four = sut.make_a_table(axs, all_survey_areas, colLabels=colLabels, colWidths=colWidths, a_color="saddlebrown")
table_four.get_celld()[(0,0)].get_text().set_text(" ")
plt.tight_layout()
plt.show()
_images/walensee_17_0.png

12.2.1. Most common objects results by municipality

Below: Walensee most common objects: median p/100m

# aggregated survey totals for the most common codes for all the water features
m_common_st = fd[fd.code.isin(m_common.index)].groupby([this_level, "loc_date","code"], as_index=False).agg(agg_pcs_quantity)
m_common_ft = m_common_st.groupby([this_level, "code"], as_index=False)[unit_label].median()

# map the desctiption to the code
m_common_ft["item"] = m_common_ft.code.map(lambda x: code_description_map.loc[x])

# pivot that
m_c_p = m_common_ft[["item", this_level, unit_label]].pivot(columns=this_level, index="item")

# quash the hierarchal column index
m_c_p.columns = m_c_p.columns.get_level_values(1)

## the aggregated totals for the feature data
c = sut.aggregate_to_group_name(fd[fd.code.isin(m_common.index)], column="code", name=this_feature["name"], val="med")
m_c_p[this_feature["name"]]= sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of the survey area
c = sut.aggregate_to_group_name(a_data[(a_data.river_bassin == this_bassin)&(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[bassin_label] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of all the data
c = sut.aggregate_to_group_name(a_data[(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[top] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# chart that
fig, ax  = plt.subplots(figsize=(len(m_c_p.columns)*.9,len(m_c_p)*.9))
axone = ax

sns.heatmap(m_c_p, ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt=".1f", square=True, cbar=False, linewidth=.1, linecolor="white")
axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="x")
axone.tick_params(labelsize=12, which="both", axis="y")

plt.setp(axone.get_xticklabels(), rotation=90)

plt.show()
plt.close()
_images/walensee_20_0.png

12.2.2. Most common objects monthly average

# collect the survey results of the most common objects
m_common_m = fd[(fd.code.isin(m_common.index))].groupby(["loc_date", "date", "code", "groupname"], as_index=False).agg(agg_pcs_quantity)
m_common_m.set_index("date", inplace=True)

# set the order of the chart, group the codes by groupname columns
an_order = m_common_m.groupby(["code", "groupname"], as_index=False).quantity.sum().sort_values(by="groupname")["code"].values

# a manager dict for the monthly results of each code
mgr = {}

# get the monhtly results for each code:
for a_group in an_order:
    # resample by month
    a_plot = m_common_m[(m_common_m.code==a_group)][unit_label].resample("M").mean().fillna(0)
    this_group = {a_group:a_plot}
    mgr.update(this_group)

monthly_mc = F"""
*__Below:__ {this_feature['name']}, monthly average survey result {unit_label}. Detail of the most common objects*
"""
md(monthly_mc)

Below: Walensee, monthly average survey result p/100m. Detail of the most common objects

# convenience function to lable x axis
def new_month(x):
    if x <= 11:
        this_month = x
    else:
        this_month=x-12    
    return this_month
months={
    0:'Jan',
    1:'Feb',
    2:'Mar',
    3:'Apr',
    4:'May',
    5:'Jun',
    6:'Jul',
    7:'Aug',
    8:'Sep',
    9:'Oct',
    10:'Nov',
    11:'Dec'
}

fig, ax = plt.subplots(figsize=(9,8))

# define a bottom
bottom = [0]*len(mgr["G27"])

# the monhtly survey average for all objects and locations
monthly_fd = fd.groupby(["loc_date", "date"], as_index=False).agg(agg_pcs_quantity)
monthly_fd.set_index("date", inplace=True)
m_fd = monthly_fd[unit_label].resample("M").mean().fillna(0)

# define the xaxis
this_x = [i for i,x in  enumerate(m_fd.index)]

# plot the monthly total survey average
ax.bar(this_x, m_fd.to_numpy(), color=a_color, alpha=0.2, linewidth=1, edgecolor="teal", width=1, label="Monthly survey average") 

# plot the monthly survey average of the most common objects
for i, a_group in enumerate(an_order): 
    
    # define the axis
    this_x = [i for i,x in  enumerate(mgr[a_group].index)]
    
    # collect the month
    this_month = [x.month for i,x in enumerate(mgr[a_group].index)]
    
    # if i == 0 laydown the first bars
    if i == 0:
        ax.bar(this_x, mgr[a_group].to_numpy(), label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.6 ) 
    # else use the previous results to define the bottom
    else:
        bottom += mgr[an_order[i-1]].to_numpy()        
        ax.bar(this_x, mgr[a_group].to_numpy(), bottom=bottom, label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.8)
        
# collect the handles and labels from the legend
handles, labels = ax.get_legend_handles_labels()

# set the location of the x ticks
ax.xaxis.set_major_locator(ticker.FixedLocator([i for i in np.arange(len(this_x))]))

#label the xticks by month
axisticks = ax.get_xticks()
labelsx = [months[new_month(x-1)] for x in  this_month]
plt.xticks(ticks=axisticks, labels=labelsx)

ax.set_ylabel(unit_label, **ck.xlab_k14)

# make the legend
# swap out codes for descriptions
new_labels = [code_description_map.loc[x] for x in labels[1:]]
new_labels = new_labels[::-1]

# insert a label for the monthly average
new_labels.insert(0,"Monthly average")
handles = [handles[0], *handles[1:][::-1]]
    
plt.legend(handles=handles, labels=new_labels, bbox_to_anchor=(.5, -.05), loc="upper center",  ncol=2, fontsize=14)       
plt.tight_layout()
plt.show()
_images/walensee_23_0.png

12.3. Utility of the objects found

The utility type is based on the utilization of the object prior to it being discarded or object description if the original use is undetermined. Identified objects are classified into one of 260 predefined categories. The categories are grouped according to utilization or item description.

  • wastewater: items released from water treatment plants includes items likely toilet flushed

  • micro plastics (< 5mm): fragmented plastics and pre-production plastic resins

  • infrastructure: items related to construction and maintenance of buildings, roads and water/power supplies

  • food and drink: all materials related to consuming food and drink

  • agriculture: primarily industrial sheeting i.e., mulch and row covers, greenhouses, soil fumigation, bale wraps. Includes hard plastics for agricultural fencing, flowerpots etc.

  • tobacco: primarily cigarette filters, includes all smoking related material

  • recreation: objects related to sports and leisure i.e., fishing, hunting, hiking etc.

  • packaging non food and drink: packaging material not identified as food, drink nor tobacco related

  • plastic fragments: plastic pieces of undetermined origin or use

  • personal items: accessories, hygiene and clothing related

See the annex for the complete list of objects identified, includes descriptions and group classification. The section Code groups describes each code group in detail and provides a comprehensive list of all objects in a group.



Below: Walensee utility of objects found % of total by municipality. Fragmented objects with no clear identification remain classified by size:

# code groups resluts aggregated by survey
groups = ["loc_date","groupname"]
cg_t = fd.groupby([this_level,*groups], as_index=False).agg(agg_pcs_quantity)

# the total per water feature
cg_tq = cg_t.groupby(this_level).quantity.sum()

# get the fail rates for each group per survey
cg_t["fail"]=False
cg_t["fail"] = cg_t.quantity.where(lambda x: x == 0, True)

# aggregate all that for each municipality
agg_this = {unit_label:"median", "quantity":"sum", "fail":"sum", "loc_date":"nunique"} 
cg_t = cg_t.groupby([this_level, "groupname"], as_index=False).agg(agg_this)

# assign survey area total to each record
for a_feature in cg_tq.index:
    cg_t.loc[cg_t[this_level] == a_feature, "f_total"] = cg_tq.loc[a_feature]

# get the percent of total for each group for each survey area
cg_t["pt"] = (cg_t.quantity/cg_t.f_total).round(2)

# pivot that
data_table = cg_t.pivot(columns=this_level, index="groupname", values="pt")

# aggregated values for the lake
data_table[this_feature["name"]]= sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for the survey area
data_table[bassin_label] = sut.aggregate_to_group_name(a_data[a_data.river_bassin == this_bassin], unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for all the data
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="pt")

data = data_table

fig, ax = plt.subplots(figsize=(11,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, cbar=False, fmt=".0%", linewidth=.1, square=True, linecolor="white")

axone.set_ylabel("")
axone.set_xlabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/walensee_26_0.png
cg_medpcm = F"""
<br></br>
*__Below:__ {this_feature['name']} utility of objects found median {unit_label}. Fragmented objects with no clear identification remain classified by size:*
"""
md(cg_medpcm)



Below: Walensee utility of objects found median p/100m. Fragmented objects with no clear identification remain classified by size:

# median p/50m of all the water features
data_table = cg_t.pivot(columns=this_level, index="groupname", values=unit_label)

# aggregated values for the lake
data_table[this_feature["name"]]= sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# the survey area columns
data_table[bassin_label] = sut.aggregate_to_group_name(a_data[a_data.river_bassin == this_bassin], unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# column for all the surveys
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="med")

# merge with data_table
data = data_table

fig, ax = plt.subplots(figsize=(11,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt="g", cbar=False, linewidth=.1, square=True, linecolor="white")

axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/walensee_28_0.png

12.4. Annex

12.4.1. Fragmented foams and plastics by size

The table below contains the “Gfoam” and “Gfrags” components grouped for analysis. Objects labeled expanded foams are grouped as Gfoam and includes all expanded polystyrene foamed plastics > 0.5 cm. Plastic pieces and objects made of combined plastic and foamed plastic materials > 0.5 cm. are grouped for analysis as Gfrags.

Below: Walensee fragmented foams and plastics by size group.

# collect the data before aggregating foams for all locations in the survey area
# the codes for the foams
some_foams = ["G81", "G82", "G83", "G74"]

# the codes for the fragmented plastics
some_frag_plas = list(before_agg[before_agg.groupname == "plastic pieces"].code.unique())

# aggregate all the codes by loc_date and get the total quantity and the median pcs/m
fd_frags_foams = before_agg[(before_agg.code.isin([*some_frag_plas, *some_foams]))&(before_agg.location.isin(t["locations"]))].groupby(["loc_date","code"], as_index=False).agg(agg_pcs_quantity)
fd_frags_foams = fd_frags_foams.groupby("code").agg({unit_label:"median", "quantity":"sum"})

# add code description and format for printing
fd_frags_foams["item"] = fd_frags_foams.index.map(lambda x: code_description_map.loc[x])
fd_frags_foams["% of total"] = (fd_frags_foams.quantity/fd.quantity.sum()*100).round(2)
fd_frags_foams["% of total"] = fd_frags_foams["% of total"].map(lambda x: F"{x}%")
fd_frags_foams["quantity"] = fd_frags_foams["quantity"].map(lambda x: F"{x:,}")

# table data
data = fd_frags_foams[["item", unit_label, "quantity", "% of total"]]

fig, axs = plt.subplots(figsize=(11,len(data)*.7))
sut.hide_spines_ticks_grids(axs)

a_table = sut.make_a_table(axs, data.values,  colLabels=data.columns, colWidths=[.6, .13, .13, .13])
a_table.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
plt.tight_layout()
plt.close()
_images/walensee_31_0.png

12.4.2. The survey locations

# display the survey locations

disp_columns = ["latitude", "longitude", "city"]
disp_beaches = dfBeaches.loc[t["locations"]][disp_columns]
disp_beaches.reset_index(inplace=True)
disp_beaches.rename(columns={"slug":"location"}, inplace=True)
disp_beaches.set_index("location", inplace=True, drop=True)

disp_beaches
latitude longitude city
location
gasi-strand 47.128442 9.110831 Weesen
walensee_walenstadt_wysse 47.121828 9.299552 Walenstadt
untertenzen 47.115260 9.254780 Quarten
mols-rocks 47.114343 9.288174 Quarten
seeflechsen 47.130223 9.103400 Glarus Nord
seemuhlestrasse-strand 47.128640 9.295100 Walenstadt
muhlehorn-dorf 47.118448 9.172124 Glarus Nord
murg-bad 47.115307 9.215691 Quarten
flibach-river-right-bank 47.133742 9.105461 Weesen

12.4.3. Inventory of items

pd.set_option("display.max_rows", None)

complete_inventory = code_totals[code_totals.quantity>0][["item", "groupname", "quantity","% of total","fail rate"]]
complete_inventory.sort_values(by="quantity", ascending=False)
item groupname quantity % of total fail rate
code
Gfoam Expanded polystyrene infrastructure 718 19.44 93
G27 Cigarette filters tobacco 657 17.79 96
Gfrags Fragmented plastics plastic pieces 445 12.05 87
G67 Industrial sheeting agriculture 310 8.39 87
G30 Food wrappers; candy, snacks food and drink 160 4.33 80
G74 Insulation foams infrastructure 156 4.22 61
G117 Expanded foams < 5mm micro plastics (< 5mm) 107 2.90 45
G89 Plastic construction waste infrastructure 71 1.92 64
G200 Glass drink bottles, pieces food and drink 59 1.60 61
G106 Plastic fragments angular <5mm micro plastics (< 5mm) 41 1.11 22
G156 Paper fragments packaging non food 39 1.06 45
G941 Packaging films nonfood or unknown packaging non food 37 1.00 29
G95 Cotton bud/swab sticks waste water 36 0.97 48
G25 Tobacco; plastic packaging, containers tobacco 36 0.97 41
G177 Foil wrappers, aluminum foil food and drink 35 0.95 38
G115 Foamed plastic <5mm micro plastics (< 5mm) 33 0.89 12
G24 Plastic lid rings food and drink 32 0.87 61
G178 Metal bottle caps and lids food and drink 31 0.84 54
G21 Drink lids food and drink 30 0.81 45
G936 Sheeting ag. greenhouse film agriculture 29 0.79 29
G940 Foamed EVA for crafts and sports recreation 27 0.73 12
G10 Food containers single use foamed or plastic food and drink 25 0.68 38
G904 Plastic fireworks recreation 22 0.60 35
G32 Toys and party favors recreation 22 0.60 45
G917 Terracotta balls unclassified 21 0.57 19
G66 Straps/bands; hard, plastic package fastener infrastructure 20 0.54 38
G112 Industrial pellets (nurdles) micro plastics (< 5mm) 20 0.54 22
G125 Balloons and balloon sticks recreation 20 0.54 32
G922 Labels, bar codes packaging non food 19 0.51 29
G35 Straws and stirrers food and drink 19 0.51 38
G23 Lids unidentified packaging non food 18 0.49 38
G923 Tissue, toilet paper, napkins, paper towels personal items 18 0.49 32
G31 Lollypop sticks food and drink 16 0.43 29
G33 Lids for togo drinks plastic food and drink 16 0.43 25
G211 Swabs, bandaging, medical personal items 12 0.32 25
G50 String < 1cm recreation 11 0.30 32
G152 Cigarette boxes, tobacco related paper/cardboard tobacco 11 0.30 12
G131 Rubber bands personal items 10 0.27 19
G34 Cutlery, plates and trays food and drink 10 0.27 16
G213 Paraffin wax recreation 10 0.27 12
G153 Cups, food containers, wrappers (paper) food and drink 10 0.27 16
G208 Glass or ceramic fragments > 2.5 cm unclassified 9 0.24 19
G90 Plastic flower pots agriculture 9 0.24 22
G943 Fencing agriculture, plastic agriculture 8 0.22 12
G22 Lids for chemicals, detergents (non-food) infrastructure 8 0.22 16
G165 Ice cream sticks, toothpicks, chopsticks food and drink 8 0.22 16
G98 Diapers - wipes waste water 7 0.19 16
G149 Paper packaging packaging non food 7 0.19 6
G3 Plastic bags, carier bags packaging non food 7 0.19 19
G927 String trimmer line, used to cut grass, weeds,... infrastructure 7 0.19 16
G96 Sanitary-pads/tampons, applicators waste water 7 0.19 19
G942 Plastic shavings from lathes, CNC machining unclassified 7 0.19 9
G175 Cans, beverage food and drink 7 0.19 19
G126 Balls recreation 6 0.16 16
G146 Paper, cardboard packaging non food 6 0.16 9
G170 Wood (processed) agriculture 6 0.16 9
G73 Foamed items & pieces (non packaging/insulatio... recreation 6 0.16 9
G137 Clothing, towels & rags personal items 6 0.16 16
G155 Fireworks paper tubes and fragments recreation 6 0.16 6
G65 Buckets agriculture 6 0.16 9
G914 Paperclips, clothespins, plastic utility items personal items 6 0.16 12
G91 Biomass holder waste water 6 0.16 9
G4 Small plastic bags; freezer, zip-lock etc. packaging non food 5 0.14 12
G100 Medical; containers/tubes/ packaging waste water 4 0.11 9
G20 Caps and lids packaging non food 4 0.11 6
G135 Clothes, footware, headware, gloves personal items 4 0.11 9
G26 Cigarette lighters tobacco 4 0.11 9
G59 Fishing line monofilament (angling) recreation 4 0.11 6
G198 Other metal pieces < 50cm infrastructure 4 0.11 12
G148 Cardboard (boxes and fragments) packaging non food 3 0.08 6
G101 Dog feces bag personal items 3 0.08 9
G159 Corks food and drink 3 0.08 9
G919 Nails, screws, bolts etc. infrastructure 3 0.08 6
G142 Rope , string or nets recreation 3 0.08 9
G186 Industrial scrap infrastructure 3 0.08 9
G103 Plastic fragments rounded <5mm micro plastics (< 5mm) 3 0.08 3
G931 Tape-caution for barrier, police, construction... infrastructure 3 0.08 6
G204 Bricks, pipes not plastic infrastructure 3 0.08 6
G7 Drink bottles < = 0.5L food and drink 3 0.08 6
G921 Ceramic tile and pieces infrastructure 2 0.05 3
G93 Cable ties; steggel, zip, zap straps infrastructure 2 0.05 6
G908 Tape; electrical, insulating infrastructure 2 0.05 6
G925 Packets: desiccant/ moisture absorbers, plasti... packaging non food 2 0.05 6
G87 Tape, masking/duct/packing infrastructure 2 0.05 6
G928 Ribbons and bows personal items 2 0.05 6
G8 Drink bottles > 0.5L food and drink 2 0.05 6
G12 Cosmetics, non-beach use personal care containers personal items 2 0.05 6
G49 Rope > 1cm recreation 2 0.05 6
G201 Jars, includes pieces food and drink 2 0.05 3
G68 Fiberglass fragments infrastructure 2 0.05 6
G124 Other plastic or foam products unclassified 2 0.05 6
G203 Tableware ceramic or glass, cups, plates, pieces food and drink 2 0.05 6
G6 Bottles and containers, plastic non food/drink packaging non food 2 0.05 3
G161 Processed timber agriculture 2 0.05 6
G29 Combs, brushes and sunglasses personal items 2 0.05 6
G191 Wire and mesh agriculture 2 0.05 6
G134 Other rubber unclassified 2 0.05 6
G43 Tags fishing or industry (security tags, seals) recreation 2 0.05 3
G194 Cables, metal wire(s) often inside rubber or p... infrastructure 2 0.05 6
G36 Bags/sacks heavy duty plastic for 25 Kg or mor... agriculture 2 0.05 6
G114 Films <5mm micro plastics (< 5mm) 1 0.03 3
G930 Foam earplugs personal items 1 0.03 3
G197 Other metal infrastructure 1 0.03 3
G933 Bags, cases for accessories; glasses, electron... personal items 1 0.03 3
G71 Shoes sandals personal items 1 0.03 3
G939 Flowers, plants plastic personal items 1 0.03 3
G179 Disposable BBQs food and drink 1 0.03 3
G176 Cans, food food and drink 1 0.03 3
G17 Injection gun cartridge infrastructure 1 0.03 3
G99 Syringes - needles personal items 1 0.03 3
G154 Newspapers or magazines personal items 1 0.03 3
G11 Cosmetics for the beach, e.g. sunblock recreation 1 0.03 3
G133 Condoms incl. packaging waste water 1 0.03 3
G929 Electronics and pieces; sensors, headsets etc. personal items 1 0.03 3
G926 Chewing gum, often contains plastics food and drink 1 0.03 3
G70 Shotgun cartridges recreation 1 0.03 3
G132 Bobbers (fishing) recreation 1 0.03 3
G92 Bait containers recreation 1 0.03 3
G38 Coverings; plastic packaging, sheeting for pro... unclassified 1 0.03 3
G41 Glove industrial/professional agriculture 1 0.03 3
G48 Rope, synthetic recreation 1 0.03 3
G5 Generic plastic bags packaging non food 1 0.03 3
G907 coffee capsules plastic food and drink 1 0.03 3
G905 Hair clip, hair ties, personal accessories pl... personal items 1 0.03 3
G53 Nets and pieces < 50cm recreation 1 0.03 3
G901 Mask medical, synthetic personal items 1 0.03 3
G119 Sheetlike user plastic (>1mm) micro plastics (< 5mm) 1 0.03 3
G61 Other fishing related recreation 1 0.03 3
G144 Tampons waste water 1 0.03 3