# -*- coding: utf-8 -*-
# This is a report using the data from IQAASL.
# IQAASL was a project funded by the Swiss Confederation
# It produces a summary of litter survey results for a defined region.
# These charts serve as the models for the development of plagespropres.ch
# The data is gathered by volunteers.
# Please remember all copyrights apply, please give credit when applicable
# The repo is maintained by the community effective January 01, 2022
# There is ample opportunity to contribute, learn and teach
# contact dev@hammerdirt.ch

# Dies ist ein Bericht, der die Daten von IQAASL verwendet.
# IQAASL war ein von der Schweizerischen Eidgenossenschaft finanziertes Projekt.
# Es erstellt eine Zusammenfassung der Ergebnisse der Littering-Umfrage für eine bestimmte Region.
# Diese Grafiken dienten als Vorlage für die Entwicklung von plagespropres.ch.
# Die Daten werden von Freiwilligen gesammelt.
# Bitte denken Sie daran, dass alle Copyrights gelten, bitte geben Sie den Namen an, wenn zutreffend.
# Das Repo wird ab dem 01. Januar 2022 von der Community gepflegt.
# Es gibt reichlich Gelegenheit, etwas beizutragen, zu lernen und zu lehren.
# Kontakt dev@hammerdirt.ch

# Il s'agit d'un rapport utilisant les données de IQAASL.
# IQAASL était un projet financé par la Confédération suisse.
# Il produit un résumé des résultats de l'enquête sur les déchets sauvages pour une région définie.
# Ces tableaux ont servi de modèles pour le développement de plagespropres.ch
# Les données sont recueillies par des bénévoles.
# N'oubliez pas que tous les droits d'auteur s'appliquent, veuillez indiquer le crédit lorsque cela est possible.
# Le dépôt est maintenu par la communauté à partir du 1er janvier 2022.
# Il y a de nombreuses possibilités de contribuer, d'apprendre et d'enseigner.
# contact dev@hammerdirt.ch

# sys, file and nav packages:
import datetime as dt

# math packages:
import pandas as pd
import numpy as np
from scipy import stats
from statsmodels.distributions.empirical_distribution import ECDF

# charting:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib import ticker
from matplotlib import colors
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.gridspec import GridSpec
import seaborn as sns

# home brew utitilties
import resources.chart_kwargs as ck
import resources.sr_ut as sut

# images and display
from IPython.display import Markdown as md


# set some parameters:
start_date = "2020-03-01"
end_date ="2021-05-31"
start_end = [start_date, end_date]
a_fail_rate = 50
unit_label = "p/100m"

a_color = "saddlebrown"

# colors for gradients
cmap2 = ck.cmap2
colors_palette = ck.colors_palette

bassin_map = "resources/maps/survey_areas/rhone_scaled.jpeg"

# top level aggregation
top = "All survey areas"

# define the feature level and components
this_feature = {"slug":"rhone", "name":"Rhône survey area", "level":"river_bassin"}
this_level = "water_name_slug"
this_bassin = "rhone"
bassin_label = "Rhône survey area"

lakes_of_interest = ["lac-leman"]
# explanatory variables:
luse_exp = ["% buildings", "% recreation", "% agg", "% woods", "streets km", "intersects"]

# common aggregations
agg_pcs_quantity = {unit_label:"sum", "quantity":"sum"}
agg_pcs_median = {unit_label:"median", "quantity":"sum"}

# aggregation of dimensional data
agg_dims = {"total_w":"sum", "mac_plast_w":"sum", "area":"sum", "length":"sum"}

# columns needed
use_these_cols = ["loc_date" ,
                  "% to buildings",
                  "% to trans", 
                  "% to recreation",
                  "% to agg",
                  "% to woods",
                  "population",
                  this_level,
                  "streets km",
                  "intersects",
                  "length",
                  "groupname",
                  "code"
                 ]

# get your data:
dfBeaches = pd.read_csv("resources/beaches_with_land_use_rates.csv")
dfCodes = pd.read_csv("resources/codes_with_group_names_2015.csv")
dfDims = pd.read_csv("resources/corrected_dims.csv")

# set the index of the beach data to location slug
dfBeaches.set_index("slug", inplace=True)

# map water_name_slug to water_name
wname_wname = dfBeaches[["water_name_slug","water_name"]].reset_index(drop=True).drop_duplicates().set_index("water_name_slug")

dfCodes.set_index("code", inplace=True)

codes_to_change = [
    ["G74", "description", "Insulation foams"],
    ["G940", "description", "Foamed EVA for crafts and sports"],
    ["G96", "description", "Sanitary-pads/tampons, applicators"],
    ["G178", "description", "Metal bottle caps and lids"],
    ["G82", "description", "Expanded foams 2.5cm - 50cm"],
    ["G81", "description", "Expanded foams .5cm - 2.5cm"],
    ["G117", "description", "Expanded foams < 5mm"],
    ["G75", "description", "Plastic/foamed polystyrene 0 - 2.5cm"],
    ["G76", "description", "Plastic/foamed polystyrene 2.5cm - 50cm"],
    ["G24", "description", "Plastic lid rings"],
    ["G33", "description", "Lids for togo drinks plastic"],
    ["G3", "description", "Plastic bags, carier bags"],
    ["G204", "description", "Bricks, pipes not plastic"],
    ["G904", "description", "Plastic fireworks"],
    ["G211", "description", "Swabs, bandaging, medical"],
]

for x in codes_to_change:
    dfCodes = sut.shorten_the_value(x, dfCodes)

# the surveyor designated the object as aluminum instead of metal
dfCodes.loc["G708", "material"] = "Metal"

# make a map to the code descriptions
code_description_map = dfCodes.description

# make a map to the code materials
code_material_map = dfCodes.material

5. Rhône

Below: Map of survey locations March 2020 - May 2021. Marker diameter = the mean survey result in pieces of litter per 100 meters (p/100m).

sut.display_image_ipython(bassin_map, thumb=(800,450))
_images/rhone_sa_3_0.png

5.1. Sample locations and land use characteristics

# this is the data before the expanded foams and fragmented plastics are aggregated to Gfrags and Gfoams
before_agg = pd.read_csv("resources/checked_before_agg_sdata_eos_2020_21.csv")

# this is the aggregated survey data that is being used
# a_data is all the data in the survey period
a_data = pd.read_csv(F"resources/checked_sdata_eos_2020_21.csv")
a_data["date"] = pd.to_datetime(a_data.date)

a_data.rename(columns={"% to agg":"% ag", "% to recreation": "% recreation", "% to woods":"% woods", "% to buildings":"% buildings"}, inplace=True)
luse_exp = ["% buildings", "% recreation", "% ag", "% woods", "streets km", "intersects"]

fd = sut.feature_data(a_data, this_feature["level"], these_features=[this_feature["slug"]])

# cumulative statistics for each code
code_totals = sut.the_aggregated_object_values(fd, agg=agg_pcs_median, description_map=code_description_map, material_map=code_material_map)    

# daily survey totals
dt_all = fd.groupby(["loc_date","location",this_level, "city","date"], as_index=False).agg(agg_pcs_quantity )

# the materials table
fd_mat_totals = sut.the_ratio_object_to_total(code_totals)

# summary statistics, nsamples, nmunicipalities, names of citys, population
t = sut.make_table_values(fd, col_nunique=["location", "loc_date", "city"], col_sum=["quantity"], col_median=[])

# make a map to the population values for each survey location/city
fd_pop_map = dfBeaches.loc[fd.location.unique()][["city", "population"]].copy()
fd_pop_map.drop_duplicates(inplace=True)

# update t with the population data
t.update(sut.make_table_values(fd_pop_map, col_nunique=["city"], col_sum=["population"], col_median=[]))

# update t with the list of locations from fd
t.update({"locations":fd.location.unique()})

# the lake and river names in the survey area
lakes = dfBeaches.loc[(dfBeaches.index.isin(t["locations"]))&(dfBeaches.water == "l")]["water_name"].unique()
rivers = dfBeaches.loc[(dfBeaches.index.isin(t["locations"]))&(dfBeaches.water == "r")]["water_name"].unique()

# join the strings into comma separated list
obj_string = "{:,}".format(t["quantity"])
surv_string = "{:,}".format(t["loc_date"])
pop_string = "{:,}".format(int(t["population"]))

# make strings
date_quantity_context = F"For the period between {start_date[:-3]} and {end_date[:-3]}, a total of {obj_string } objects were removed and identified over the course of {surv_string} surveys."
geo_context = F"The {bassin_label} results include {t['location']} different locations, {t['city']} different municipalities with a combined population of approximately {pop_string}."
# admin_context = F"There are {t['city']} different municipalities represented in these results with a combined population of approximately {pop_string}."
munis_joined = ", ".join(sorted(fd_pop_map["city"]))
lakes_joined = ", ".join(sorted(lakes))
rivers_joined = ", ".join(sorted(rivers))

# put that all together:
lake_string = F"""
{date_quantity_context} {geo_context }

*{bassin_label} lakes:*\n\n>{lakes_joined}

*{bassin_label} rivers:*\n\n>{rivers_joined}

*{bassin_label} municipalities:*\n\n>{munis_joined}
"""
md(lake_string)

For the period between 2020-03 and 2021-05, a total of 28,454 objects were removed and identified over the course of 106 surveys. The Rhône survey area results include 32 different locations, 18 different municipalities with a combined population of approximately 488,138.

Rhône survey area lakes:

Lac Léman

Rhône survey area rivers:

Rhône

Rhône survey area municipalities:

Allaman, Bourg-en-Lavaux, Genève, Gland, La Tour-de-Peilz, Lausanne, Lavey-Morcles, Leuk, Montreux, Préverenges, Riddes, Saint-Gingolph, Saint-Sulpice (VD), Salgesch, Sion, Tolochenaz, Versoix, Vevey

5.1.1. Land use profile of the surveys

The land use is reported as the percent of total area attributed to each land use category within a 1500m radius of the survey location.

Streets are reported as the total number of kilometers of streets within the 1500m radius. Intersects is also an ordinal ranking of the number of rivers/canals that intersect a lake within 1500m of the survey location.

The ratio of the number of samples under varying land use profiles gives an indication of the environmental and economic conditions of the survey sites.

For more information Land use profile

Below: Distribution of land use characteristics.

sns.set_style("whitegrid")
# the ratio of samples with respect to the different land use characteristics for each survey area
# the data to use is the unique combinations of loc_date and the land_use charcteristics of each location
project_profile = a_data[["loc_date", this_feature["level"], *luse_exp]].drop_duplicates()
dt_nw = fd[["loc_date", this_feature["level"], *luse_exp]].drop_duplicates()

# labels and levels
comps = [this_feature["slug"]]
comp_labels = {x:wname_wname.loc[x][0] for x in fd[this_level].unique()}

fig, axs = plt.subplots(2, 3, figsize=(9,8), sharey="row")

for i, n in enumerate(luse_exp):
    r = i%2
    c = i%3
    ax=axs[r,c]
    for element in[this_feature["slug"]]:
        data=dt_nw[dt_nw[this_feature["level"]] == element][n].values
        the_data = ECDF(data)
        
        # plot that
        sns.lineplot(x=the_data.x, y=the_data.y, ax=ax, label=bassin_label)
    
    # get the dist for all here
    a_all_surveys =  ECDF(project_profile[n].values)
    
    # plot that    
    sns.lineplot(x=a_all_surveys.x, y=a_all_surveys.y, ax=ax, label="All survey areas", color="magenta")
    
    # get the median from the data
    the_median = np.median(data)
    
    # plot the median and drop horzontal and vertical lines
    ax.scatter([the_median], 0.5, color="red",s=50, linewidth=2, zorder=100, label="the median")
    ax.vlines(x=the_median, ymin=0, ymax=0.5, color="red", linewidth=2)
    ax.hlines(xmax=the_median, xmin=0, y=0.5, color="red", linewidth=2)
    
    if i <= 3:
        if c == 0:            
            ax.set_ylabel("Ratio of samples", **ck.xlab_k)
        ax.xaxis.set_major_formatter(ticker.PercentFormatter(1.0, 0, "%"))        
    else:
        pass
      
    
    handles, labels = ax.get_legend_handles_labels()
    ax.get_legend().remove()    
    ax.set_xlabel(n, **ck.xlab_k)
plt.tight_layout()
plt.subplots_adjust(top=.9, hspace=.3)
plt.suptitle("Land use within 1500m of the survey location", ha="center", y=1, fontsize=16)
fig.legend(handles, labels, bbox_to_anchor=(.5,.94), loc="center", ncol=3)    

plt.show()
_images/rhone_sa_8_0.png

5.1.2. Cumulative totals by water feature

# aggregate the dimensional data
dims_parameters = dict(this_level=this_level, 
                       locations=fd.location.unique(), 
                       start_end=start_end, 
                       agg_dims=agg_dims)

dims_table = sut.gather_dimensional_data(dfDims, **dims_parameters)

# map the qauntity to the dimensional data
q_map = fd.groupby(this_level).quantity.sum()

# collect the number of samples from the survey total data:
for name in dims_table.index:
    dims_table.loc[name, "samples"] = fd[fd[this_level] == name].loc_date.nunique()
    dims_table.loc[name, "quantity"] = q_map[name]

# add proper names for display
dims_table["water_feature"] = dims_table.index.map(lambda x: comp_labels[x])
dims_table.set_index("water_feature", inplace=True)
   
# get the sum of all survey areas
dims_table.loc[this_feature["name"]]= dims_table.sum(numeric_only=True, axis=0)

# for display
dims_table.sort_values(by=["quantity"], ascending=False, inplace=True)
dims_table.rename(columns={"samples":"samples","quantity":"items", "total_w":"total kg", "mac_plast_w":"plastic kg", "area":"m²", "length":"meters"}, inplace=True)

# format kilos and text strings
dims_table["plastic kg"] = dims_table["plastic kg"]/1000
dims_table[["m²", "meters", "samples", "items"]] = dims_table[["m²", "meters", "samples", "items"]].applymap(lambda x: "{:,}".format(int(x)))
dims_table[["plastic kg", "total kg"]] = dims_table[["plastic kg", "total kg"]].applymap(lambda x: "{:.2f}".format(x))

# figure caption
agg_caption = F"""
*__Below:__ The cumulative weights and measures for the {this_feature["name"]} and water bodies.*
"""
md(agg_caption)

Below: The cumulative weights and measures for the Rhône survey area and water bodies.

# make table
data = dims_table.reset_index()
colLabels = data.columns

fig, ax = plt.subplots(figsize=(len(colLabels)*1.8,len(data)*.7))
sut.hide_spines_ticks_grids(ax)

table_one = sut.make_a_table(ax, data.values, colLabels=colLabels, colWidths=[.28, *[.12]*6], a_color=a_color)
table_one.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.show()
_images/rhone_sa_11_0.png

5.1.3. Distribution of survey results

# the surveys to chart
fd_dindex = dt_all.set_index("date")

# all the other surveys
ots = dict(level_to_exclude=this_feature["level"], components_to_exclude=fd[this_feature["level"]].unique())
dts_date = sut.the_other_surveys(a_data, **ots)
dts_date.head()

# the survey totals from all other survey areas
dts_date = dts_date.groupby(["loc_date","date"], as_index=False)[unit_label].sum()
dts_date.set_index("date", inplace=True)

# get the monthly or quarterly results for the feature
resample_plot, rate = sut.quarterly_or_monthly_values(fd_dindex , this_feature["name"], vals=unit_label, quarterly=["ticino"])

# scale the chart as needed to accomodate for extreme values
y_lim = 99
y_limit = np.percentile(dts_date[unit_label], y_lim)

# label for the chart that alerts to the scale
not_included = F"Values greater than {round(y_limit, 1)} not shown."

# figure caption
chart_notes = F"""
*__Left:__ {this_feature["name"]}, {start_date[:7]} through {end_date[:7]}, n={t["loc_date"]}. {not_included} __Right:__ {this_feature["name"]} empirical cumulative distribution of survey results.*
"""
md(chart_notes )

Left: Rhône survey area, 2020-03 through 2021-05, n=106. Values greater than 1360.7 not shown. Right: Rhône survey area empirical cumulative distribution of survey results.

# months locator, can be confusing
# https://matplotlib.org/stable/api/dates_api.html
months = mdates.MonthLocator(interval=1)
months_fmt = mdates.DateFormatter("%b")
days = mdates.DayLocator(interval=7)

fig, axs = plt.subplots(1,2, figsize=(10,5))

# the survey totals by day
ax = axs[0]

# feature surveys
sns.scatterplot(data=dts_date, x=dts_date.index, y=unit_label, label=top, color="black", alpha=0.4,  ax=ax)
# all other surveys
sns.scatterplot(data=fd_dindex, x=fd_dindex.index, y=unit_label, label=this_feature["name"], color="red", s=34, ec="white", ax=ax)

# monthly or quaterly plot
sns.lineplot(data=resample_plot, x=resample_plot.index, y=resample_plot, label=F"{this_feature['name']}: {rate} median", color="magenta", ax=ax)

ax.set_ylim(0,y_limit )
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.set_xlabel("")
ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)
ax.legend()

# the cumlative distributions:
axtwo = axs[1]

# the feature of interest
feature_ecd = ECDF(dt_all[unit_label].values)    
sns.lineplot(x=feature_ecd.x, y=feature_ecd.y, color="darkblue", ax=axtwo, label=this_feature["name"])

# the other features
other_features = ECDF(dts_date[unit_label].values)
sns.lineplot(x=other_features.x, y=other_features.y, color="magenta", label=top, linewidth=1, ax=axtwo)

axtwo.set_xlabel(unit_label, **ck.xlab_k14)
axtwo.set_ylabel("Ratio of samples", **ck.xlab_k14)

plt.tight_layout()
plt.show()
_images/rhone_sa_14_0.png

5.1.4. Summary data and material types

Left: Rhône survey area summary of survey totals. Right: Rhône survey area material type and percent of total.

# get the basic statistics from pd.describe
cs = dt_all[unit_label].describe().round(2)

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

fd_mat_totals = sut.fmt_pct_of_total(fd_mat_totals)
fd_mat_totals = sut.make_string_format(fd_mat_totals)

# applly new column names for printing
cols_to_use = {"material":"Material","quantity":"Quantity", "% of total":"% of total"}
fd_mat_t = fd_mat_totals[cols_to_use.keys()].values

# make tables
fig, axs = plt.subplots(1,2, figsize=(8,6))

# summary table
# names for the table columns
a_col = [this_feature["name"], "total"]

axone = axs[0]
sut.hide_spines_ticks_grids(axone)

table_two = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_two.get_celld()[(0,0)].get_text().set_text(" ")
table_two.set_fontsize(14)

# material table
axtwo = axs[1]
axtwo.set_xlabel(" ")
sut.hide_spines_ticks_grids(axtwo)

table_three = sut.make_a_table(axtwo, fd_mat_t,  colLabels=list(cols_to_use.values()), colWidths=[.4, .3,.3],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_three.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.subplots_adjust(wspace=0.2)
plt.show()
_images/rhone_sa_17_0.png

5.2. The most common objects

The most common objects are the ten most abundant by quantity AND/OR objects identified in at least 50% of all surveys.

# the top ten by quantity
most_abundant = code_totals.sort_values(by="quantity", ascending=False)[:10]

# the most common
most_common = code_totals[code_totals["fail rate"] >= a_fail_rate].sort_values(by="quantity", ascending=False)

# merge with most_common and drop duplicates
m_common = pd.concat([most_abundant, most_common]).drop_duplicates()

# get percent of total
m_common_percent_of_total = m_common.quantity.sum()/code_totals.quantity.sum()

# figure caption
rb_string = F"""
*__Below:__ {this_feature['name']} most common objects: fail rate >/= {a_fail_rate}%  and/or top ten by quantity. Combined, the most abundant objects represent {int(m_common_percent_of_total*100)}% of all objects found.*

Note : {unit_label} = median survey value.
"""
md(rb_string)

Below: Rhône survey area most common objects: fail rate >/= 50% and/or top ten by quantity. Combined, the most abundant objects represent 79% of all objects found.

Note : p/100m = median survey value.

# format values for table
m_common["item"] = m_common.index.map(lambda x: code_description_map.loc[x])
m_common["% of total"] = m_common["% of total"].map(lambda x: F"{x}%")
m_common["quantity"] = m_common.quantity.map(lambda x: "{:,}".format(x))
m_common["fail rate"] = m_common["fail rate"].map(lambda x: F"{x}%")
m_common[unit_label] = m_common[unit_label].map(lambda x: F"{round(x,1)}")

cols_to_use = {"item":"Item","quantity":"Quantity", "% of total":"% of total", "fail rate":"Fail rate", unit_label:unit_label}
all_survey_areas = m_common[cols_to_use.keys()].values

fig, axs = plt.subplots(figsize=(10,len(m_common)*.7))

sut.hide_spines_ticks_grids(axs)

table_four = sut.make_a_table(axs, all_survey_areas,  colLabels=list(cols_to_use.values()), colWidths=[.52, .12,.12,.12, .12],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_four.get_celld()[(0,0)].get_text().set_text(" ")
table_four.set_fontsize(14)
plt.tight_layout()
plt.show()
_images/rhone_sa_20_0.png

5.2.1. Most common objects by water feature

Below: Rhône survey area most common objects: median p/100m

# aggregated survey totals for the most common codes for all the water features
m_common_st = fd[fd.code.isin(m_common.index)].groupby([this_level, "loc_date","code"], as_index=False).agg(agg_pcs_quantity)
m_common_ft = m_common_st.groupby([this_level, "code"], as_index=False)[unit_label].median()

# proper name of water feature for display
m_common_ft["f_name"] = m_common_ft[this_level].map(lambda x: comp_labels[x])

# map the desctiption to the code
m_common_ft["item"] = m_common_ft.code.map(lambda x: code_description_map.loc[x])

# pivot that
m_c_p = m_common_ft[["item", unit_label, "f_name"]].pivot(columns="f_name", index="item")

# quash the hierarchal column index
m_c_p.columns = m_c_p.columns.get_level_values(1)

# the aggregated totals for the survey area

c = sut.aggregate_to_group_name(fd[fd.code.isin(m_common.index)], column="code", name=this_feature["name"], val="med")

m_c_p[this_feature["name"]]= sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of all the data
c = sut.aggregate_to_group_name(a_data[(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[top] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# chart that
fig, ax  = plt.subplots(figsize=(len(m_c_p.columns)*.9,len(m_c_p)*.9))
axone = ax

sns.heatmap(m_c_p, ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt=".1f", square=True, cbar=False, linewidth=.1, linecolor="white")
axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="x")
axone.tick_params(labelsize=12, which="both", axis="y")

plt.setp(axone.get_xticklabels(), rotation=90)

plt.show()
_images/rhone_sa_23_0.png

5.2.2. Most common objects monthly average

# collect the survey results of the most common objects
m_common_m = fd[(fd.code.isin(m_common.index))].groupby(["loc_date","date","code", "groupname"], as_index=False).agg(agg_pcs_quantity)
m_common_m.set_index("date", inplace=True)

# set the order of the chart, group the codes by groupname columns
an_order = m_common_m.groupby(["code","groupname"], as_index=False).quantity.sum().sort_values(by="groupname")["code"].values

# a manager dict for the monthly results of each code
mgr = {}

# get the monhtly results for each code:
for a_group in an_order:
    # resample by month
    a_plot = m_common_m[(m_common_m.code==a_group)][unit_label].resample("M").mean().fillna(0)
    this_group = {a_group:a_plot}
    mgr.update(this_group)

monthly_mc = F"""
*__Below:__ {this_feature["name"]}, monthly average survey result {unit_label}, with detail of the most common objects.*
"""
md(monthly_mc)

Below: Rhône survey area, monthly average survey result p/100m, with detail of the most common objects.

months={
    0:"Jan",
    1:"Feb",
    2:"Mar",
    3:"Apr",
    4:"May",
    5:"Jun",
    6:"Jul",
    7:"Aug",
    8:"Sep",
    9:"Oct",
    10:"Nov",
    11:"Dec"
}

# convenience function to lable x axis
def new_month(x):
    if x <= 11:
        this_month = x
    else:
        this_month=x-12    
    return this_month

fig, ax = plt.subplots(figsize=(10,7))

# define a bottom
bottom = [0]*len(mgr["G27"])

# the monhtly survey average for all objects and locations
monthly_fd = fd.groupby(["loc_date", "date"], as_index=False).agg(agg_pcs_quantity)
monthly_fd.set_index("date", inplace=True)
m_fd = monthly_fd[unit_label].resample("M").mean().fillna(0)

# define the xaxis
this_x = [i for i,x in  enumerate(m_fd.index)]

# plot the monthly total survey average
ax.bar(this_x, m_fd.to_numpy(), color=a_color, alpha=0.2, linewidth=1, edgecolor="teal", width=1, label="Monthly survey average") 

# plot the monthly survey average of the most common objects
for i, a_group in enumerate(an_order): 
    
    # define the axis
    this_x = [i for i,x in  enumerate(mgr[a_group].index)]
    
    # collect the month
    this_month = [x.month for i,x in enumerate(mgr[a_group].index)]
    
    # if i == 0 laydown the first bars
    if i == 0:
        ax.bar(this_x, mgr[a_group].to_numpy(), label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.6 ) 
    # else use the previous results to define the bottom
    else:
        bottom += mgr[an_order[i-1]].to_numpy()        
        ax.bar(this_x, mgr[a_group].to_numpy(), bottom=bottom, label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.8)
        
# collect the handles and labels from the legend
handles, labels = ax.get_legend_handles_labels()

# set the location of the x ticks
ax.xaxis.set_major_locator(ticker.FixedLocator([i for i in np.arange(len(this_x))]))
ax.set_ylabel(unit_label, **ck.xlab_k14)

# label the xticks by month
axisticks = ax.get_xticks()
labelsx = [months[new_month(x-1)] for x in  this_month]
plt.xticks(ticks=axisticks, labels=labelsx)

# make the legend
# swap out codes for descriptions
new_labels = [code_description_map.loc[x] for x in labels[1:]]
new_labels = new_labels[::-1]

# insert a label for the monthly average
new_labels.insert(0,"Monthly survey average")
handles = [handles[0], *handles[1:][::-1]]
    
plt.legend(handles=handles, labels=new_labels, bbox_to_anchor=(.5, -.05), loc="upper center",  ncol=2, fontsize=14)       
plt.show()
_images/rhone_sa_26_0.png

5.3. Survey results and land use

The land use mix is a unique representation of the type and amplitude of the economic activity and the environmental conditions around the survey location. The key indicators from the survey results are compared against the land use rates for a radius of 1500m from the survey location.

An association is a relationship between the survey results and the land use profile that is unlikely due to chance. The magnitude of the relationship is neither defined nor linear.

Ranked correlation is a non-parametric test to determine if there is a statistically significant relationship between land use and the objects identified in a litter survey.

The method used is the Spearman’s rho or Spearmans ranked correlation coefficient. The test results are evaluated at p<0.05 for all valid lake samples in the survey area.

  1. Red/rose is a positive association

  2. Yellow is a negative association

  3. White means that p>0.05, there is no statistical basis to assume an association

corr_data = fd[(fd.code.isin(m_common.index))&(fd.water_name_slug.isin(lakes_of_interest))].copy()

alert_less_than_100 = len(corr_data.loc_date.unique()) <= 100

if alert_less_than_100:
    warning = F"""**There are less than 100 samples, proceed with caution. Beach litter surveys have alot of variance**"""
else:
    warning = ""

association = F"""*__Below:__ {this_feature["name"]} ranked correlation of the most common objects with respect to land use profile.
For all valid lake samples n={len(corr_data.loc_date.unique())}.*

{warning}
"""
md(association)

Below: Rhône survey area ranked correlation of the most common objects with respect to land use profile. For all valid lake samples n=98.

There are less than 100 samples, proceed with caution. Beach litter surveys have alot of variance

# chart the results of test for association
fig, axs = plt.subplots(len(m_common.index),len(luse_exp), figsize=(len(luse_exp)+7,len(m_common.index)+1), sharey="row")

# the test is conducted on the survey results for each code
for i,code in enumerate(m_common.index):
    # slice the data
    data = corr_data[corr_data.code == code]
    
    # run the test on for each land use feature
    for j, n in enumerate(luse_exp):       
        # assign ax and set some parameters
        ax=axs[i, j]
        ax.grid(False)
        ax.tick_params(axis="both", which="both",bottom=False,top=False,labelbottom=False, labelleft=False, left=False)
        
        # check the axis and set titles and labels       
        if i == 0:
            ax.set_title(F"{n}")
        else:
            pass
        
        if j == 0:
            ax.set_ylabel(F"{code_description_map[code]}", rotation=0, ha="right", **ck.xlab_k14)
            ax.set_xlabel(" ")
        else:
            ax.set_xlabel(" ")
            ax.set_ylabel(" ")
        # run test
        _, corr, a_p = sut.make_plot_with_spearmans(data, ax, n)
        
        # if siginficant set adjust color to direction
        if a_p < 0.05:
            if corr > 0:
                ax.patch.set_facecolor("salmon")
                ax.patch.set_alpha(0.5)
            else:
                ax.patch.set_facecolor("palegoldenrod")
                ax.patch.set_alpha(0.5)

plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
_images/rhone_sa_30_0.png

Key:  if p>0.05 = white,  if p < 0.05 and \(\rho\) > 0 = red,  if p < 0.05 and \(\rho\) < 0 = yellow

5.4. Utility of the objects found

The utility type is based on the utilization of the object prior to it being discarded or object description if the original use is undetermined. Identified objects are classified into one of 260 predefined categories. The categories are grouped according to utilization or item description.

  • wastewater: items released from water treatment plants includes items likely toilet flushed

  • micro plastics (< 5mm): fragmented plastics and pre-production plastic resins

  • infrastructure: items related to construction and maintenance of buildings, roads and water/power supplies

  • food and drink: all materials related to consuming food and drink

  • agriculture: primarily industrial sheeting i.e., mulch and row covers, greenhouses, soil fumigation, bale wraps. Includes hard plastics for agricultural fencing, flowerpots etc.

  • tobacco: primarily cigarette filters, includes all smoking related material

  • recreation: objects related to sports and leisure i.e., fishing, hunting, hiking etc.

  • packaging non food and drink: packaging material not identified as food, drink nor tobacco related

  • plastic fragments: plastic pieces of undetermined origin or use

  • personal items: accessories, hygiene and clothing related

See the annex for the complete list of objects identified, includes descriptions and group classification. The section Code groups describes each code group in detail and provides a comprehensive list of all objects in a group.



Below: Rhône survey area utility of objects found % of total by water feature. Fragmented objects with no clear identification remain classified by size.

# code groups resluts aggregated by survey
groups = ["loc_date","groupname"]
cg_t = fd.groupby([this_level,*groups], as_index=False).agg(agg_pcs_quantity)

# the total per water feature
cg_tq = cg_t.groupby(this_level).quantity.sum()

# get the fail rates for each group per survey
cg_t["fail"]=False
cg_t["fail"] = cg_t.quantity.where(lambda x: x == 0, True)

# aggregate all that for each municipality
agg_this = {unit_label:"median", "quantity":"sum", "fail":"sum", "loc_date":"nunique"} 
cg_t = cg_t.groupby([this_level, "groupname"], as_index=False).agg(agg_this)

# assign survey area total to each record
for a_feature in cg_tq.index:
    cg_t.loc[cg_t[this_level] == a_feature, "f_total"] = cg_tq.loc[a_feature]

# get the percent of total for each group for each survey area
cg_t["pt"] = (cg_t.quantity/cg_t.f_total).round(2)

# pivot that
data_table = cg_t.pivot(columns=this_level, index="groupname", values="pt")

# repeat for the survey area
data_table[bassin_label] = sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for all the data
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="pt")

data = data_table
data.rename(columns={x:wname_wname.loc[x][0] for x in data.columns[:-2]}, inplace=True)

fig, ax = plt.subplots(figsize=(10,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, cbar=False, fmt=".0%", linewidth=.1, square=True, linecolor="white")

axone.set_ylabel("")
axone.set_xlabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/rhone_sa_34_0.png
cg_medpcm = F"""
<br></br>
*__Below:__ {this_feature["name"]} utility of objects found median {unit_label}. Fragmented objects with no clear identification remain classified by size.*
"""
md(cg_medpcm)



Below: Rhône survey area utility of objects found median p/100m. Fragmented objects with no clear identification remain classified by size.

# median p/50m of all the water features
data_table = cg_t.pivot(columns="water_name_slug", index="groupname", values=unit_label)

# the survey area columns
data_table[bassin_label] = sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# column for all the surveys
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="med")

# merge with data_table
data = data_table
data.rename(columns={x:wname_wname.loc[x][0] for x in data.columns[:-2]}, inplace=True)
fig, ax = plt.subplots(figsize=(10,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt="g", cbar=False, linewidth=.1, square=True, linecolor="white")

axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/rhone_sa_36_0.png

5.5. Rivers

rivers = fd[fd.w_t == "r"].copy()
r_smps = rivers.groupby(["loc_date", "date", "location", "water_name_slug"], as_index=False).agg(agg_pcs_quantity)
l_smps = fd[fd.w_t == "l"].groupby(["loc_date","date","location", "water_name_slug"], as_index=False).agg(agg_pcs_quantity)

chart_notes = F"""
*__Left:__ {this_feature["name"]} rivers, {start_date[:7]} through {end_date[:7]}, n={len(r_smps.loc_date.unique())}. {not_included} __Right:__ Summary data.*
"""
md(chart_notes )

Left: Rhône survey area rivers, 2020-03 through 2021-05, n=8. Values greater than 1360.7 not shown. Right: Summary data.

cs = r_smps[unit_label].describe().round(2)

# add project totals
cs["total objects"] = r_smps.quantity.sum()

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

# make the charts
fig = plt.figure(figsize=(11,6))

aspec = fig.add_gridspec(ncols=11, nrows=3)

ax = fig.add_subplot(aspec[:, :6])

line_label = F"{rate} median:{top}"

sns.scatterplot(data=l_smps, x="date", y=unit_label, color="black", alpha=0.4, label="Lake surveys", ax=ax)
sns.scatterplot(data=r_smps, x="date", y=unit_label, color="red", s=34, ec="white",label="River surveys", ax=ax)

ax.set_ylim(-10,y_limit )

ax.set_xlabel("")
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)

a_col = [this_feature["name"], "total"]

axone = fig.add_subplot(aspec[:, 7:])
sut.hide_spines_ticks_grids(axone)

table_five = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_five.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
_images/rhone_sa_39_0.png

5.5.1. Rivers most common objects

riv_mcommon = F"""
*__Below:__ {this_feature["name"]} rivers, most common objects {unit_label}: median survey value*
"""
md(riv_mcommon)

Below: Rhône survey area rivers, most common objects p/100m: median survey value

# the most common items rivers
r_codes = rivers.groupby("code").agg({"quantity":"sum", "fail":"sum", unit_label:"median"})
r_codes["Fail rate"] = (r_codes.fail/r_smps.loc_date.nunique()*100).astype("int")

# top ten
r_byq = r_codes.sort_values(by="quantity", ascending=False)[:10].index

# most common
r_byfail = r_codes[r_codes["Fail rate"] > 49.99].index
r_most_common = list(set(r_byq) | set(r_byfail))

# format for display
r_mc= r_codes.loc[r_most_common].copy()
r_mc["item"] = r_mc.index.map(lambda x: code_description_map.loc[x])
r_mc.sort_values(by="quantity", ascending=False, inplace=True)

r_mc["% of total"]=((r_mc.quantity/r_codes.quantity.sum())*100).astype("int")
r_mc["% of total"] = r_mc["% of total"].map(lambda x: F"{x}%")
r_mc["quantity"] = r_mc.quantity.map(lambda x: "{:,}".format(x))
r_mc["Fail rate"] = r_mc["Fail rate"].map(lambda x: F"{x}%")
r_mc["p/50m"] = r_mc[unit_label].map(lambda x: F"{np.ceil(x)}")
r_mc.rename(columns=cols_to_use, inplace=True)

data=r_mc[["Item","Quantity", "% of total", "Fail rate", unit_label]]

fig, axs = plt.subplots(figsize=(11,len(data)*.7))

sut.hide_spines_ticks_grids(axs)

table_six = sut.make_a_table(axs, data.values,  colLabels=list(data.columns), colWidths=[.48, .13,.13,.13, .13], **{"loc":"lower center"})
table_six.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
plt.tight_layout()
plt.close()
_images/rhone_sa_42_0.png

5.6. Annex

5.6.1. Fragmented foams and plastics by size

The table below contains the “Gfoam” and “Gfrags” components grouped for analysis. Objects labeled expanded foams are grouped as Gfoam and includes all expanded polystyrene foamed plastics > 0.5 cm. Plastic pieces and objects made of combined plastic and foamed plastic materials > 0.5 cm. are grouped for analysis as Gfrags.

Below: Rhône survey area fragmented foams and plastics by size group.

# collect the data before aggregating foams for all locations in the survye area
# group by loc_date and code
# Combine the different sizes of fragmented plastics and styrofoam
# the codes for the foams
some_foams = ["G81", "G82", "G83", "G74"]

# the codes for the fragmented plastics
some_frag_plas = list(before_agg[before_agg.groupname == "plastic pieces"].code.unique())

fd_frags_foams = before_agg[(before_agg.code.isin([*some_frag_plas, *some_foams]))&(before_agg.location.isin(t["locations"]))].groupby(["loc_date","code"], as_index=False).agg(agg_pcs_quantity)
fd_frags_foams = fd_frags_foams.groupby("code").agg(agg_pcs_median)

# add code description and format for printing
fd_frags_foams["item"] = fd_frags_foams.index.map(lambda x: code_description_map.loc[x])
fd_frags_foams["% of total"] = (fd_frags_foams.quantity/fd.quantity.sum()*100).round(2)
fd_frags_foams["% of total"] = fd_frags_foams["% of total"].map(lambda x: F"{x}%")
fd_frags_foams["quantity"] = fd_frags_foams["quantity"].map(lambda x: F"{x:,}")

# table data
data = fd_frags_foams[["item",unit_label, "quantity", "% of total"]]

fig, axs = plt.subplots(figsize=(len(data.columns)*2.4,len(data)*.7))

sut.hide_spines_ticks_grids(axs)

table_seven = sut.make_a_table(axs,data.values,  colLabels=data.columns, colWidths=[.6, .13, .13, .13], a_color=a_color)
table_seven.get_celld()[(0,0)].get_text().set_text(" ")
table_seven.set_fontsize(14)

plt.show()
plt.tight_layout()
plt.close()
_images/rhone_sa_45_0.png

5.6.2. The survey locations

# display the survey locations
disp_columns = ["latitude", "longitude", "city"]
disp_beaches = dfBeaches.loc[t["locations"]][disp_columns]
disp_beaches.reset_index(inplace=True)
disp_beaches.rename(columns={"slug":"location"}, inplace=True)
disp_beaches.set_index("location", inplace=True, drop=True)

disp_beaches
latitude longitude city
location
maladaire 46.446296 6.876960 La Tour-de-Peilz
preverenges 46.512690 6.527657 Préverenges
vidy-ruines 46.516221 6.596279 Lausanne
baby-plage-geneva 46.208558 6.162923 Genève
grand-clos 46.387746 6.843686 Saint-Gingolph
quai-maria-belgia 46.460156 6.836718 Vevey
anarchy-beach 46.447216 6.859612 La Tour-de-Peilz
lavey-les-bains-2 46.207726 7.011685 Lavey-Morcles
leuk-mattenstrasse 46.314754 7.622521 Leuk
pont-sous-terre 46.202960 6.131577 Genève
cully-plage 46.488887 6.741396 Bourg-en-Lavaux
preverenges-le-sout 46.508905 6.534526 Préverenges
la-pecherie 46.463919 6.385732 Allaman
villa-barton 46.222350 6.152500 Genève
oyonne 46.456682 6.852262 La Tour-de-Peilz
lavey-la-source 46.200804 7.021866 Lavey-Morcles
lavey-les-bains 46.205159 7.012722 Lavey-Morcles
baby-plage-ii-geneve 46.208940 6.164330 Genève
les-glariers 46.176736 7.228925 Riddes
tiger-duck-beach 46.518256 6.582546 Saint-Sulpice (VD)
le-pierrier 46.439727 6.888968 Montreux
tschilljus 46.304399 7.580262 Salgesch
boiron 46.491030 6.480162 Tolochenaz
rocky-plage 46.209737 6.164952 Genève
lacleman_gland_lecoanets 46.402811 6.281959 Gland
baye-de-montreux-g 46.430834 6.908778 Montreux
les-vieux-ronquoz 46.222049 7.361664 Sion
versoix 46.289194 6.170569 Versoix
parc-des-pierrettes 46.515215 6.575531 Saint-Sulpice (VD)
plage-de-st-sulpice 46.513265 6.570977 Saint-Sulpice (VD)
bain-des-dames 46.450507 6.858092 La Tour-de-Peilz
tolochenaz 46.497509 6.482875 Tolochenaz

5.6.3. Inventory of items

pd.set_option("display.max_rows", None)
complete_inventory = code_totals[code_totals.quantity>0][["item", "groupname", "quantity", "% of total","fail rate"]]
complete_inventory.sort_values(by="quantity", ascending=False)
item groupname quantity % of total fail rate
code
Gfrags Fragmented plastics plastic pieces 4220 14.83 93
Gfoam Expanded polystyrene infrastructure 3589 12.61 80
G27 Cigarette filters tobacco 3169 11.14 90
G30 Food wrappers; candy, snacks food and drink 1737 6.10 92
G112 Industrial pellets (nurdles) micro plastics (< 5mm) 1387 4.87 43
G67 Industrial sheeting agriculture 1180 4.15 76
G74 Insulation foams infrastructure 1112 3.91 71
G95 Cotton bud/swab sticks waste water 1112 3.91 75
G117 Expanded foams < 5mm micro plastics (< 5mm) 718 2.52 28
G89 Plastic construction waste infrastructure 614 2.16 65
G200 Glass drink bottles, pieces food and drink 554 1.95 54
G106 Plastic fragments angular <5mm micro plastics (< 5mm) 427 1.50 22
G21 Drink lids food and drink 425 1.49 51
G24 Plastic lid rings food and drink 362 1.27 68
G178 Metal bottle caps and lids food and drink 350 1.23 67
G70 Shotgun cartridges recreation 347 1.22 50
G25 Tobacco; plastic packaging, containers tobacco 296 1.04 51
G98 Diapers - wipes waste water 295 1.04 35
G10 Food containers single use foamed or plastic food and drink 288 1.01 47
G35 Straws and stirrers food and drink 278 0.98 67
G23 Lids unidentified packaging non food 263 0.92 54
G31 Lollypop sticks food and drink 238 0.84 62
G103 Plastic fragments rounded <5mm micro plastics (< 5mm) 229 0.80 5
G3 Plastic bags, carier bags packaging non food 206 0.72 24
G33 Lids for togo drinks plastic food and drink 201 0.71 55
G32 Toys and party favors recreation 194 0.68 60
G177 Foil wrappers, aluminum foil food and drink 178 0.63 52
G100 Medical; containers/tubes/ packaging waste water 177 0.62 57
G921 Ceramic tile and pieces infrastructure 176 0.62 23
G22 Lids for chemicals, detergents (non-food) infrastructure 176 0.62 31
G73 Foamed items & pieces (non packaging/insulatio... recreation 166 0.58 38
G38 Coverings; plastic packaging, sheeting for pro... unclassified 152 0.53 11
G941 Packaging films nonfood or unknown packaging non food 139 0.49 17
G66 Straps/bands; hard, plastic package fastener infrastructure 135 0.47 41
G211 Swabs, bandaging, medical personal items 103 0.36 41
G156 Paper fragments packaging non food 101 0.35 25
G922 Labels, bar codes packaging non food 99 0.35 31
G91 Biomass holder waste water 96 0.34 34
G159 Corks food and drink 90 0.32 38
G208 Glass or ceramic fragments > 2.5 cm unclassified 87 0.31 14
G904 Plastic fireworks recreation 85 0.30 23
G90 Plastic flower pots agriculture 80 0.28 25
G125 Balloons and balloon sticks recreation 79 0.28 26
G96 Sanitary-pads/tampons, applicators waste water 77 0.27 30
G204 Bricks, pipes not plastic infrastructure 68 0.24 15
G124 Other plastic or foam products unclassified 68 0.24 16
G165 Ice cream sticks, toothpicks, chopsticks food and drink 68 0.24 22
G34 Cutlery, plates and trays food and drink 65 0.23 25
G914 Paperclips, clothespins, plastic utility items personal items 65 0.23 24
G50 String < 1cm recreation 62 0.22 29
G153 Cups, food containers, wrappers (paper) food and drink 62 0.22 17
G105 Plastic fragments subangular <5mm micro plastics (< 5mm) 59 0.21 7
G908 Tape; electrical, insulating infrastructure 58 0.20 19
G198 Other metal pieces < 50cm infrastructure 58 0.20 25
G28 Pens, lids, mechanical pencils etc. personal items 57 0.20 28
G137 Clothing, towels & rags personal items 54 0.19 17
G923 Tissue, toilet paper, napkins, paper towels personal items 51 0.18 18
G93 Cable ties; steggel, zip, zap straps infrastructure 51 0.18 24
G149 Paper packaging packaging non food 50 0.18 13
G905 Hair clip, hair ties, personal accessories pl... personal items 48 0.17 29
G26 Cigarette lighters tobacco 45 0.16 22
G155 Fireworks paper tubes and fragments recreation 44 0.15 2
G115 Foamed plastic <5mm micro plastics (< 5mm) 43 0.15 3
G131 Rubber bands personal items 43 0.15 26
G146 Paper, cardboard packaging non food 40 0.14 9
G152 Cigarette boxes, tobacco related paper/cardboard tobacco 39 0.14 13
G937 Pheromone baits for vineyards agriculture 38 0.13 16
G7 Drink bottles < = 0.5L food and drink 35 0.12 14
G157 Paper packaging non food 35 0.12 10
G4 Small plastic bags; freezer, zip-lock etc. packaging non food 33 0.12 13
G939 Flowers, plants plastic personal items 33 0.12 13
G20 Caps and lids packaging non food 31 0.11 12
G135 Clothes, footware, headware, gloves personal items 31 0.11 15
G207 Octopus pots unclassified 30 0.11 0
G142 Rope , string or nets recreation 30 0.11 15
G191 Wire and mesh agriculture 29 0.10 13
G65 Buckets agriculture 28 0.10 13
G175 Cans, beverage food and drink 28 0.10 12
G213 Paraffin wax recreation 28 0.10 17
G144 Tampons waste water 27 0.09 10
G12 Cosmetics, non-beach use personal care containers personal items 25 0.09 13
G48 Rope, synthetic recreation 23 0.08 14
G148 Cardboard (boxes and fragments) packaging non food 23 0.08 6
G99 Syringes - needles personal items 21 0.07 16
G936 Sheeting ag. greenhouse film agriculture 20 0.07 10
G134 Other rubber unclassified 20 0.07 13
G2 Bags packaging non food 20 0.07 10
G943 Fencing agriculture, plastic agriculture 19 0.07 8
G6 Bottles and containers, plastic non food/drink packaging non food 18 0.06 5
G114 Films <5mm micro plastics (< 5mm) 18 0.06 1
G126 Balls recreation 17 0.06 10
G8 Drink bottles > 0.5L food and drink 17 0.06 8
G123 Polyurethane granules < 5mm micro plastics (< 5mm) 17 0.06 0
G194 Cables, metal wire(s) often inside rubber or p... infrastructure 17 0.06 15
G87 Tape, masking/duct/packing infrastructure 16 0.06 7
G927 String trimmer line, used to cut grass, weeds,... infrastructure 16 0.06 8
G918 Safety pins, paper clips, small metal utility ... personal items 16 0.06 8
G182 Fishing; hooks, weights, lures, sinkers etc. recreation 15 0.05 7
G43 Tags fishing or industry (security tags, seals) recreation 15 0.05 5
G203 Tableware ceramic or glass, cups, plates, pieces food and drink 14 0.05 5
G113 Filaments <5mm micro plastics (< 5mm) 14 0.05 3
G145 Other textiles personal items 14 0.05 9
G186 Industrial scrap infrastructure 14 0.05 5
G201 Jars, includes pieces food and drink 13 0.05 5
G199 Other metal pieces > 50cm infrastructure 13 0.05 3
G930 Foam earplugs personal items 12 0.04 9
G64 Fenders unclassified 11 0.04 1
G928 Ribbons and bows personal items 11 0.04 4
G170 Wood (processed) agriculture 11 0.04 6
G59 Fishing line monofilament (angling) recreation 11 0.04 6
G901 Mask medical, synthetic personal items 11 0.04 8
G11 Cosmetics for the beach, e.g. sunblock recreation 10 0.04 7
G931 Tape-caution for barrier, police, construction... infrastructure 10 0.04 4
G942 Plastic shavings from lathes, CNC machining unclassified 10 0.04 7
G940 Foamed EVA for crafts and sports recreation 10 0.04 3
G158 Other paper items packaging non food 10 0.04 2
G210 Other glass/ceramic unclassified 10 0.04 3
G938 Toothpicks, dental floss plastic food and drink 9 0.03 7
G176 Cans, food food and drink 9 0.03 4
G906 coffee capsules aluminum food and drink 8 0.03 3
G101 Dog feces bag personal items 8 0.03 7
G926 Chewing gum, often contains plastics food and drink 8 0.03 5
G900 Gloves latex personal protective equipment personal items 8 0.03 6
G119 Sheetlike user plastic (>1mm) micro plastics (< 5mm) 8 0.03 0
G118 Small industrial spheres <5mm micro plastics (< 5mm) 8 0.03 3
G128 Tires and belts unclassified 8 0.03 5
G133 Condoms incl. packaging waste water 8 0.03 6
G933 Bags, cases for accessories; glasses, electron... personal items 7 0.02 2
G916 Pencils and pieces personal items 7 0.02 5
G36 Bags/sacks heavy duty plastic for 25 Kg or mor... agriculture 7 0.02 1
G195 Batteries - household personal items 7 0.02 6
G929 Electronics and pieces; sensors, headsets etc. personal items 7 0.02 5
G68 Fiberglass fragments infrastructure 7 0.02 5
G136 Shoes personal items 7 0.02 3
G61 Other fishing related recreation 7 0.02 5
G37 Mesh bags personal items 6 0.02 2
G147 Paper bags packaging non food 5 0.02 4
G167 Matches or fireworks recreation 5 0.02 2
G97 Toilet fresheners waste water 5 0.02 4
G17 Injection gun cartridge infrastructure 5 0.02 1
G919 Nails, screws, bolts etc. infrastructure 5 0.02 3
G917 Terracotta balls unclassified 5 0.02 2
G19 Car parts unclassified 5 0.02 2
G915 Reflectors, plastic mobility items personal items 4 0.01 3
G181 Tableware metal; cups, cutlery etc. food and drink 4 0.01 3
G29 Combs, brushes and sunglasses personal items 4 0.01 3
G104 Plastic fragments subrounded <5mm micro plastics (< 5mm) 3 0.01 1
G92 Bait containers recreation 3 0.01 2
G40 Gloves household/gardening personal items 3 0.01 1
G129 Inner tubes and rubber sheets unclassified 3 0.01 1
G197 Other metal infrastructure 3 0.01 2
G913 Pacifier personal items 3 0.01 2
G108 disk pellets <5mm micro plastics (< 5mm) 3 0.01 1
G62 Floats for nets unclassified 3 0.01 1
G161 Processed timber agriculture 3 0.01 1
G116 Granules <5mm micro plastics (< 5mm) 3 0.01 0
G13 Bottles, containers, drums to transport, store... agriculture 3 0.01 1
G63 Buoys recreation 3 0.01 1
G107 Cylindrical pellets < 5mm micro plastics (< 5mm) 2 0.01 0
G55 Fishing line (entangled) recreation 2 0.01 1
G139 Backpacks personal items 2 0.01 0
G140 Bags, burlap, hessian, jute or hemp agriculture 2 0.01 0
G932 Bio-beads, micro plastic for wastewater treatm... waste water 2 0.01 0
G109 Flat pellets <5mm micro plastics (< 5mm) 2 0.01 0
G150 Milk cartons, tetrapack food and drink 2 0.01 1
G925 Packets: desiccant/ moisture absorbers, plasti... packaging non food 2 0.01 1
G49 Rope > 1cm recreation 2 0.01 1
G151 Cartons, Tetrapacks food and drink 2 0.01 1
G907 coffee capsules plastic food and drink 2 0.01 1
G5 Generic plastic bags packaging non food 2 0.01 1
G138 Shoes and sandals personal items 1 0.00 0
G14 Engine oil bottles unclassified 1 0.00 0
G102 Flip-flops personal items 1 0.00 0
G945 Razor blades personal items 1 0.00 0
G193 car parts and batteries unclassified 1 0.00 0
G935 Walking stick pads and pieces, often elastomer... personal items 1 0.00 0
G39 Gloves personal items 1 0.00 0
G154 Newspapers or magazines personal items 1 0.00 0
G196 Large metallic objects unclassified 1 0.00 0
G171 Other wood < 50cm agriculture 1 0.00 0
G172 Other wood > 50cm agriculture 1 0.00 0
G173 Other unclassified 1 0.00 0
G174 Aerosol spray cans infrastructure 1 0.00 0
G202 Light bulbs unclassified 1 0.00 0
G51 Fishing net recreation 1 0.00 0
G9 Cleaner, chemical bottles & containers infrastructure 1 0.00 0
G179 Disposable BBQs food and drink 1 0.00 0
G183 Fish hook remains recreation 1 0.00 0
G185 Middle size containers unclassified 1 0.00 0
G166 Paint brushes infrastructure 1 0.00 0