# -*- coding: utf-8 -*-

# This is a report using the data from IQAASL.
# IQAASL was a project funded by the Swiss Confederation
# It produces a summary of litter survey results for a defined region.
# These charts serve as the models for the development of plagespropres.ch
# The data is gathered by volunteers.
# Please remember all copyrights apply, please give credit when applicable
# The repo is maintained by the community effective January 01, 2022
# There is ample opportunity to contribute, learn and teach
# contact dev@hammerdirt.ch

# Dies ist ein Bericht, der die Daten von IQAASL verwendet.
# IQAASL war ein von der Schweizerischen Eidgenossenschaft finanziertes Projekt.
# Es erstellt eine Zusammenfassung der Ergebnisse der Littering-Umfrage für eine bestimmte Region.
# Diese Grafiken dienten als Vorlage für die Entwicklung von plagespropres.ch.
# Die Daten werden von Freiwilligen gesammelt.
# Bitte denken Sie daran, dass alle Copyrights gelten, bitte geben Sie den Namen an, wenn zutreffend.
# Das Repo wird ab dem 01. Januar 2022 von der Community gepflegt.
# Es gibt reichlich Gelegenheit, etwas beizutragen, zu lernen und zu lehren.
# Kontakt dev@hammerdirt.ch

# Il s'agit d'un rapport utilisant les données de IQAASL.
# IQAASL était un projet financé par la Confédération suisse.
# Il produit un résumé des résultats de l'enquête sur les déchets sauvages pour une région définie.
# Ces tableaux ont servi de modèles pour le développement de plagespropres.ch
# Les données sont recueillies par des bénévoles.
# N'oubliez pas que tous les droits d'auteur s'appliquent, veuillez indiquer le crédit lorsque cela est possible.
# Le dépôt est maintenu par la communauté à partir du 1er janvier 2022.
# Il y a de nombreuses possibilités de contribuer, d'apprendre et d'enseigner.
# contact dev@hammerdirt.ch

# sys, file and nav packages:
import datetime as dt

# math packages:
import pandas as pd
import numpy as np
from scipy import stats
from statsmodels.distributions.empirical_distribution import ECDF

# charting:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib import ticker
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns

# home brew utitilties
import resources.chart_kwargs as ck
import resources.sr_ut as sut

# images and display
from IPython.display import Markdown as md

# set some parameters:
start_date = "2020-03-01"
end_date ="2021-05-31"
start_end = [start_date, end_date]
a_fail_rate = 50
unit_label = "p/100m"
a_color = "saddlebrown"

# colors for gradients
cmap2 = ck.cmap2
colors_palette = ck.colors_palette

# set the maps
bassin_map = "resources/maps/neunburgersee_scaled.jpeg"

# top level aggregation
top = "All survey areas"

# define the feature level and components
this_feature = {'slug':'neuenburgersee', 'name':"Neuenburgersee", 'level':'water_name_slug'}
this_level = 'city'
this_bassin = "aare"
bassin_label = "Aare survey area"

lakes_of_interest = ['neuenburgersee']
# explanatory variables:
luse_exp = ["% buildings", "% recreation", "% agg", "% woods", "streets km", "intersects"]

# common aggregations
agg_pcs_quantity = {unit_label:"sum", "quantity":"sum"}
agg_pcs_median = {unit_label:"median", "quantity":"sum"}

# aggregation of dimensional data
agg_dims = {"total_w":"sum", "mac_plast_w":"sum", "area":"sum", "length":"sum"}


# columns needed
use_these_cols = ["loc_date" ,
                  "% to buildings",
                  "% to trans", 
                  "% to recreation",
                  "% to agg",
                  "% to woods",
                  "population",
                  this_level,
                  "streets km",
                  "intersects",
                  "length",
                  "groupname",
                  "code"
                 ]

# get your data:
dfBeaches = pd.read_csv("resources/beaches_with_land_use_rates.csv")
dfCodes = pd.read_csv("resources/codes_with_group_names_2015.csv")
dfDims = pd.read_csv("resources/corrected_dims.csv")

# set the index of the beach data to location slug
dfBeaches.set_index("slug", inplace=True)

# make a map to city names
city_map = dfBeaches.city

# map water_name_slug to water_name
wname_wname = dfBeaches[["water_name_slug","water_name"]].reset_index(drop=True).drop_duplicates().set_index("water_name_slug")

dfCodes.set_index("code", inplace=True)

codes_to_change = [
    ["G74", "description", "Insulation foams"],
    ["G940", "description", "Foamed EVA for crafts and sports"],
    ["G96", "description", "Sanitary-pads/tampons, applicators"],
    ["G178", "description", "Metal bottle caps and lids"],
    ["G82", "description", "Expanded foams 2.5cm - 50cm"],
    ["G81", "description", "Expanded foams .5cm - 2.5cm"],
    ["G117", "description", "Expanded foams < 5mm"],
    ["G75", "description", "Plastic/foamed polystyrene 0 - 2.5cm"],
    ["G76", "description", "Plastic/foamed polystyrene 2.5cm - 50cm"],
    ["G24", "description", "Plastic lid rings"],
    ["G33", "description", "Lids for togo drinks plastic"],
    ["G3", "description", "Plastic bags, carier bags"],
    ["G204", "description", "Bricks, pipes not plastic"],
    ["G904", "description", "Plastic fireworks"],
    ["G211", "description", "Swabs, bandaging, medical"],
]

for x in codes_to_change:
    dfCodes = sut.shorten_the_value(x, dfCodes)

# the surveyor designated the object as aluminum instead of metal
dfCodes.loc["G708", "material"] = "Metal"

# make a map to the code descriptions
code_description_map = dfCodes.description

# make a map to the code materials
code_material_map = dfCodes.material

9. Neuenburgersee

Below: Map of survey locations March 2020 - May 2021. Marker diameter = the mean survey result in pieces of litter per 100 meters (p/100m).

_images/neuenburgersee_3_0.png

9.1. Sample locations

# this is the data before the expanded foams and fragmented plastics are aggregated to Gfrags and Gfoams
before_agg = pd.read_csv("resources/checked_before_agg_sdata_eos_2020_21.csv")

# this is the aggregated survey data that is being used
# a_data is all the data in the survey period
a_data = pd.read_csv(F"resources/checked_sdata_eos_2020_21.csv")
a_data["date"] = pd.to_datetime(a_data.date)

a_data.rename(columns={"% to agg":"% ag", "% to recreation": "% recreation", "% to woods":"% woods", "% to buildings":"% buildings"}, inplace=True)
luse_exp = ["% buildings", "% recreation", "% ag", "% woods", "streets km", "intersects"]

fd = sut.feature_data(a_data, this_feature["level"], these_features=lakes_of_interest)

# cumulative statistics for each code
code_totals = sut.the_aggregated_object_values(fd, agg=agg_pcs_median, description_map=code_description_map, material_map=code_material_map)    

# daily survey totals
dt_all = fd.groupby(["loc_date","location",this_level, "date"], as_index=False).agg(agg_pcs_quantity )

# the materials table
fd_mat_totals = sut.the_ratio_object_to_total(code_totals)

# summary statistics, nsamples, nmunicipalities, names of citys, population
t = sut.make_table_values(fd, col_nunique=["location", "loc_date", "city"], col_sum=["quantity"], col_median=[])

# make a map to the population values for each survey location/city
fd_pop_map = dfBeaches.loc[fd.location.unique()][["city", "population"]].copy()
fd_pop_map.drop_duplicates(inplace=True)

# update t with the population data
t.update(sut.make_table_values(fd_pop_map, col_nunique=["city"], col_sum=["population"], col_median=[]))

# update t with the list of locations from fd
t.update({"locations":fd.location.unique()})

# join the strings into comma separated list
obj_string = "{:,}".format(t["quantity"])
surv_string = "{:,}".format(t["loc_date"])
pop_string = "{:,}".format(int(t["population"]))

# make strings
date_quantity_context = F"For the period between {start_date[:-3]} and {end_date[:-3]}, a total of {obj_string } objects were removed and identified over the course of {surv_string} surveys."
geo_context = F"The {this_feature['name']} results include {t['location']} different locations in {t['city']} different municipalities with a combined population of approximately {pop_string}."
munis_joined = ", ".join(sorted(fd_pop_map["city"]))

# put that all together:
lake_string = F"""
{date_quantity_context} {geo_context }

*{this_feature["name"]} municipalities:*\n\n>{munis_joined}
"""
md(lake_string)

For the period between 2020-03 and 2021-05, a total of 4,825 objects were removed and identified over the course of 44 surveys. The Neuenburgersee results include 11 different locations in 8 different municipalities with a combined population of approximately 89,449.

Neuenburgersee municipalities:

Boudry, Cheyres-Châbles, Cudrefin, Estavayer, Grandson, Hauterive (NE), Neuchâtel, Yverdon-les-Bains

9.1.1. Cumulative totals by municipality

dims_parameters = dict(this_level=this_level, 
                       locations=fd.location.unique(), 
                       start_end=start_end, 
                       city_map=city_map, 
                       agg_dims=agg_dims)

dims_table = sut.gather_dimensional_data(dfDims, **dims_parameters)

# a map of total quantity for each component
q_map = fd.groupby(this_level).quantity.sum()

# assgin the quantity and sample numbers to the dims table
for name in dims_table.index:
    dims_table.loc[name, "samples"] = fd[fd[this_level] == name].loc_date.nunique()
    dims_table.loc[name, "quantity"] = q_map[name]

# make a total column for the top feature data, the sum of all the components
dims_table.loc[this_feature["name"]]= dims_table.sum(numeric_only=True, axis=0)

# change the column names to user friendly syle
dims_table.rename(columns=sut.update_dictionary(sut.dims_table_columns), inplace=True)

# format the numercial data
dims_table.sort_values(by=["items"], ascending=False, inplace=True)

# change to formatted strings
dims_table["plastic kg"] = dims_table["plastic kg"]/1000
dims_table[["m²", "meters", "samples", "items"]] = dims_table[["m²", "meters", "samples", "items"]].applymap(lambda x: "{:,}".format(int(x)))
dims_table[["plastic kg", "total kg"]] = dims_table[["plastic kg", "total kg"]].applymap(lambda x: "{:.2f}".format(x))

# figure caption
agg_caption = F"""
*__Below:__ The cumulative weights and measures for {this_feature["name"]} and municipalities*
"""
md(agg_caption)

Below: The cumulative weights and measures for Neuenburgersee and municipalities

# make table
data = dims_table.reset_index()
colLabels = data.columns

fig, ax = plt.subplots(figsize=(len(colLabels)*2,len(data)*.7))

sut.hide_spines_ticks_grids(ax)
table_one = sut.make_a_table(ax, data.values, colLabels=colLabels, a_color="saddlebrown")
table_one.get_celld()[(0,0)].get_text().set_text(" ")

plt.show()
plt.tight_layout()
plt.close()
_images/neuenburgersee_8_0.png

9.1.2. Distribution of Survey results

# the feature surveys to chart
fd_dindex = dt_all.set_index("date")

# all the other surveys
ots = dict(level_to_exclude=this_feature["level"], components_to_exclude=fd[this_feature["level"]].unique())
dts_date = sut.the_other_surveys(a_data, **ots)

# group the outher surveys by date and total pcs_m
ots_params = dict(agg_this = {unit_label:"sum"}, these_columns = ["loc_date","date"])
dts_date = sut.group_these_columns(dts_date, **ots_params)

# get the monthly or quarterly results for the feature
resample_plot, rate = sut.quarterly_or_monthly_values(fd_dindex , this_feature["name"], vals=unit_label, quarterly=["ticino"])    

# scale the chart as needed to accomodate for extreme values
y_lim = 98
y_limit = np.percentile(dts_date[unit_label], y_lim)

# label for the chart that alerts to the scale
not_included = F"Values greater than {round(y_limit, 1)}{unit_label} not shown."

# figure caption
chart_notes = F"""
*__Left:__ {this_feature['name']}, {start_date[:7]} through {end_date[:7]}, n={t["loc_date"]}. {not_included} __Right:__ {this_feature['name']} empirical cumulative distribution of survey results.*
"""
md(chart_notes )

Left: Neuenburgersee, 2020-03 through 2021-05, n=44. Values greater than 2383.2p/100m not shown. Right: Neuenburgersee empirical cumulative distribution of survey results.

# months locator, can be confusing
# https://matplotlib.org/stable/api/dates_api.html
# months = mdates.MonthLocator(interval=1)
months_fmt = mdates.DateFormatter("%b")
days = mdates.DayLocator(interval=7)
sns.set_style("whitegrid")

fig, axs = plt.subplots(1,2, figsize=(10,5))

# the survey totals by day
ax = axs[0]

# feature surveys
sns.scatterplot(data=dts_date, x=dts_date.index, y=unit_label, label=top, color="black", alpha=0.4,  ax=ax)
# all other surveys
sns.scatterplot(data=fd_dindex, x=fd_dindex.index, y=unit_label, label=this_feature["name"], color="red", s=34, ec="white", ax=ax)

# monthly or quaterly plot
sns.lineplot(data=resample_plot, x=resample_plot.index, y=resample_plot, label=F"{this_feature['name']}: {rate} median", color="magenta", ax=ax)

ax.set_ylim(0,y_limit )
ax.set_ylabel(unit_label, **ck.xlab_k14)

ax.set_xlabel("")
ax.xaxis.set_minor_locator(days)
ax.xaxis.set_major_formatter(months_fmt)
ax.legend()

# the cumlative distributions:
axtwo = axs[1]

# the feature of interest
feature_ecd = ECDF(dt_all[unit_label].values)    
sns.lineplot(x=feature_ecd.x, y=feature_ecd.y, color="darkblue", ax=axtwo, label=this_feature["name"])

# the other features
other_features = ECDF(dts_date[unit_label].values)
sns.lineplot(x=other_features.x, y=other_features.y, color="magenta", label=top, linewidth=1, ax=axtwo)

axtwo.set_xlabel(unit_label, **ck.xlab_k14)
axtwo.set_ylabel("Ratio of samples", **ck.xlab_k14)

plt.tight_layout()
plt.show()
_images/neuenburgersee_11_0.png

9.1.3. Summary data and material types

Left: Neuenburgersee summary of survey totals. Right: Neuenburgersee material type and percent of total

# get the basic statistics from pd.describe
cs = dt_all[unit_label].describe().round(2)

# change the names
csx = sut.change_series_index_labels(cs, sut.create_summary_table_index(unit_label, lang="EN"))

combined_summary = sut.fmt_combined_summary(csx, nf=[])

fd_mat_totals = sut.fmt_pct_of_total(fd_mat_totals)
fd_mat_totals = sut.make_string_format(fd_mat_totals)

# applly new column names for printing
cols_to_use = {"material":"Material","quantity":"Quantity", "% of total":"% of total"}
fd_mat_t = fd_mat_totals[cols_to_use.keys()].values

# make tables
fig, axs = plt.subplots(1,2, figsize=(8,6))

# summary table
# names for the table columns
a_col = [this_feature["name"], "total"]

axone = axs[0]
sut.hide_spines_ticks_grids(axone)

table_two = sut.make_a_table(axone, combined_summary,  colLabels=a_col, colWidths=[.5,.25,.25],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_two.get_celld()[(0,0)].get_text().set_text(" ")

# material table
axtwo = axs[1]
axtwo.set_xlabel(" ")
sut.hide_spines_ticks_grids(axtwo)

table_three = sut.make_a_table(axtwo, fd_mat_t,  colLabels=list(cols_to_use.values()), colWidths=[.4, .3,.3],  bbox=[0,0,1,1], **{"loc":"lower center"})
table_three.get_celld()[(0,0)].get_text().set_text(" ")

plt.tight_layout()
plt.subplots_adjust(wspace=0.2)
plt.show()
_images/neuenburgersee_14_0.png

9.2. The most common objects

The most common objects are the ten most abundant by quantity AND/OR objects identified in at least 50% of all surveys.

# the top ten by quantity
most_abundant = code_totals.sort_values(by="quantity", ascending=False)[:10]

# the most common
most_common = code_totals[code_totals["fail rate"] >= a_fail_rate].sort_values(by="quantity", ascending=False)

# merge with most_common and drop duplicates
m_common = pd.concat([most_abundant, most_common]).drop_duplicates()

# get percent of total
m_common_percent_of_total = m_common.quantity.sum()/code_totals.quantity.sum()

# figure caption
rb_string = F"""
*__Below:__ {this_feature['name']} most common objects: fail rate >/= {a_fail_rate}%  and/or top ten by quantity. Combined, the most abundant objects represent {int(m_common_percent_of_total*100)}% of all objects found. 
Note : {unit_label} = median survey value.*
"""
md(rb_string)

Below: Neuenburgersee most common objects: fail rate >/= 50% and/or top ten by quantity. Combined, the most abundant objects represent 74% of all objects found. Note : p/100m = median survey value.

# format values for table
m_common["item"] = m_common.index.map(lambda x: code_description_map.loc[x])
m_common["% of total"] = m_common["% of total"].map(lambda x: F"{x}%")
m_common["quantity"] = m_common.quantity.map(lambda x: "{:,}".format(x))
m_common["fail rate"] = m_common["fail rate"].map(lambda x: F"{x}%")
m_common[unit_label] = m_common[unit_label].map(lambda x: F"{round(x,1)}")

# final table data
cols_to_use = {"item":"Item","quantity":"Quantity", "% of total":"% of total", "fail rate":"Fail rate", unit_label:unit_label}
all_survey_areas = m_common[cols_to_use.keys()].values

colWidths=[.52, .12, .12, .12, .12]
bbox=[0,0,1,1],
kwargs = {"loc":"lower center"}
colLabels=list(cols_to_use.values())
figsize=(len(colLabels)*2,len(all_survey_areas)*.7)

fig, axs = plt.subplots(figsize=figsize)

sut.hide_spines_ticks_grids(axs)

table_four = sut.make_a_table(axs, all_survey_areas, colLabels=colLabels, colWidths=colWidths, a_color="saddlebrown")
table_four.get_celld()[(0,0)].get_text().set_text(" ")
plt.tight_layout()
plt.show()
_images/neuenburgersee_17_0.png

9.2.1. Most common objects results by municipality

Below: Neuenburgersee most common objects: median p/100m

# aggregated survey totals for the most common codes for all the water features
m_common_st = fd[fd.code.isin(m_common.index)].groupby([this_level, "loc_date","code"], as_index=False).agg(agg_pcs_quantity)
m_common_ft = m_common_st.groupby([this_level, "code"], as_index=False)[unit_label].median()

# map the desctiption to the code
m_common_ft["item"] = m_common_ft.code.map(lambda x: code_description_map.loc[x])

# pivot that
m_c_p = m_common_ft[["item", this_level, unit_label]].pivot(columns=this_level, index="item")

# quash the hierarchal column index
m_c_p.columns = m_c_p.columns.get_level_values(1)

## the aggregated totals for the feature data
c = sut.aggregate_to_group_name(fd[fd.code.isin(m_common.index)], column="code", name=this_feature["name"], val="med")
m_c_p[this_feature["name"]]= sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of the survey area
c = sut.aggregate_to_group_name(a_data[(a_data.river_bassin == this_bassin)&(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[bassin_label] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# the aggregated totals of all the data
c = sut.aggregate_to_group_name(a_data[(a_data.code.isin(m_common.index))], column="code", name=top, val="med")
m_c_p[top] = sut.change_series_index_labels(c, {x:code_description_map.loc[x] for x in c.index})

# chart that
fig, ax  = plt.subplots(figsize=(len(m_c_p.columns)*.9,len(m_c_p)*.9))
axone = ax

sns.heatmap(m_c_p, ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt=".1f", square=True, cbar=False, linewidth=.1, linecolor="white")
axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="x")
axone.tick_params(labelsize=12, which="both", axis="y")

plt.setp(axone.get_xticklabels(), rotation=90)

plt.show()
plt.close()
_images/neuenburgersee_20_0.png

9.2.2. Most common objects monthly average

# collect the survey results of the most common objects
m_common_m = fd[(fd.code.isin(m_common.index))].groupby(["loc_date", "date", "code", "groupname"], as_index=False).agg(agg_pcs_quantity)
m_common_m.set_index("date", inplace=True)

# set the order of the chart, group the codes by groupname columns
an_order = m_common_m.groupby(["code", "groupname"], as_index=False).quantity.sum().sort_values(by="groupname")["code"].values

# a manager dict for the monthly results of each code
mgr = {}

# get the monhtly results for each code:
for a_group in an_order:
    # resample by month
    a_plot = m_common_m[(m_common_m.code==a_group)][unit_label].resample("M").mean().fillna(0)
    this_group = {a_group:a_plot}
    mgr.update(this_group)

monthly_mc = F"""
*__Below:__ {this_feature['name']}, monthly average survey result {unit_label}. Detail of the most common objects*
"""
md(monthly_mc)

Below: Neuenburgersee, monthly average survey result p/100m. Detail of the most common objects

# convenience function to lable x axis
def new_month(x):
    if x <= 11:
        this_month = x
    else:
        this_month=x-12    
    return this_month
months={
    0:'Jan',
    1:'Feb',
    2:'Mar',
    3:'Apr',
    4:'May',
    5:'Jun',
    6:'Jul',
    7:'Aug',
    8:'Sep',
    9:'Oct',
    10:'Nov',
    11:'Dec'
}

fig, ax = plt.subplots(figsize=(9,8))

# define a bottom
bottom = [0]*len(mgr["G27"])

# the monhtly survey average for all objects and locations
monthly_fd = fd.groupby(["loc_date", "date"], as_index=False).agg(agg_pcs_quantity)
monthly_fd.set_index("date", inplace=True)
m_fd = monthly_fd[unit_label].resample("M").mean().fillna(0)

# define the xaxis
this_x = [i for i,x in  enumerate(m_fd.index)]

# plot the monthly total survey average
ax.bar(this_x, m_fd.to_numpy(), color=a_color, alpha=0.2, linewidth=1, edgecolor="teal", width=1, label="Monthly survey average") 

# plot the monthly survey average of the most common objects
for i, a_group in enumerate(an_order): 
    
    # define the axis
    this_x = [i for i,x in  enumerate(mgr[a_group].index)]
    
    # collect the month
    this_month = [x.month for i,x in enumerate(mgr[a_group].index)]
    
    # if i == 0 laydown the first bars
    if i == 0:
        ax.bar(this_x, mgr[a_group].to_numpy(), label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.6 ) 
    # else use the previous results to define the bottom
    else:
        bottom += mgr[an_order[i-1]].to_numpy()        
        ax.bar(this_x, mgr[a_group].to_numpy(), bottom=bottom, label=a_group, color=colors_palette[a_group], linewidth=1, alpha=0.8)
        
# collect the handles and labels from the legend
handles, labels = ax.get_legend_handles_labels()

# set the location of the x ticks
ax.xaxis.set_major_locator(ticker.FixedLocator([i for i in np.arange(len(this_x))]))

#label the xticks by month
axisticks = ax.get_xticks()
labelsx = [months[new_month(x-1)] for x in  this_month]
plt.xticks(ticks=axisticks, labels=labelsx)

ax.set_ylabel(unit_label, **ck.xlab_k14)

# make the legend
# swap out codes for descriptions
new_labels = [code_description_map.loc[x] for x in labels[1:]]
new_labels = new_labels[::-1]

# insert a label for the monthly average
new_labels.insert(0,"Period average")
handles = [handles[0], *handles[1:][::-1]]
    
plt.legend(handles=handles, labels=new_labels, bbox_to_anchor=(.5, -.05), loc="upper center",  ncol=2, fontsize=14)       
plt.tight_layout()
plt.show()
_images/neuenburgersee_23_0.png

9.3. Utility of the objects found

The utility type is based on the utilization of the object prior to it being discarded or object description if the original use is undetermined. Identified objects are classified into one of 260 predefined categories. The categories are grouped according to utilization or item description.

  • wastewater: items released from water treatment plants includes items likely toilet flushed

  • micro plastics (< 5mm): fragmented plastics and pre-production plastic resins

  • infrastructure: items related to construction and maintenance of buildings, roads and water/power supplies

  • food and drink: all materials related to consuming food and drink

  • agriculture: primarily industrial sheeting i.e., mulch and row covers, greenhouses, soil fumigation, bale wraps. Includes hard plastics for agricultural fencing, flowerpots etc.

  • tobacco: primarily cigarette filters, includes all smoking related material

  • recreation: objects related to sports and leisure i.e., fishing, hunting, hiking etc.

  • packaging non food and drink: packaging material not identified as food, drink nor tobacco related

  • plastic fragments: plastic pieces of undetermined origin or use

  • personal items: accessories, hygiene and clothing related

See the annex for the complete list of objects identified, includes descriptions and group classification. The section Code groups describes each code group in detail and provides a comprehensive list of all objects in a group.



Below: Neuenburgersee utility of objects found % of total by municipality. Fragmented objects with no clear identification remain classified by size:

# code groups resluts aggregated by survey
groups = ["loc_date","groupname"]
cg_t = fd.groupby([this_level,*groups], as_index=False).agg(agg_pcs_quantity)

# the total per water feature
cg_tq = cg_t.groupby(this_level).quantity.sum()

# get the fail rates for each group per survey
cg_t["fail"]=False
cg_t["fail"] = cg_t.quantity.where(lambda x: x == 0, True)

# aggregate all that for each municipality
agg_this = {unit_label:"median", "quantity":"sum", "fail":"sum", "loc_date":"nunique"} 
cg_t = cg_t.groupby([this_level, "groupname"], as_index=False).agg(agg_this)

# assign survey area total to each record
for a_feature in cg_tq.index:
    cg_t.loc[cg_t[this_level] == a_feature, "f_total"] = cg_tq.loc[a_feature]

# get the percent of total for each group for each survey area
cg_t["pt"] = (cg_t.quantity/cg_t.f_total).round(2)

# pivot that
data_table = cg_t.pivot(columns=this_level, index="groupname", values="pt")

# aggregated values for the lake
data_table[this_feature["name"]]= sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for the survey area
data_table[bassin_label] = sut.aggregate_to_group_name(a_data[a_data.river_bassin == this_bassin], unit_label=unit_label, column="groupname", name=bassin_label, val="pt")

# repeat for all the data
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="pt")

data = data_table

fig, ax = plt.subplots(figsize=(11,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, cbar=False, fmt=".0%", linewidth=.1, square=True, linecolor="white")

axone.set_ylabel("")
axone.set_xlabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/neuenburgersee_26_0.png
cg_medpcm = F"""
<br></br>
*__Below:__ {this_feature['name']} utility of objects found median {unit_label}. Fragmented objects with no clear identification remain classified by size:*
"""
md(cg_medpcm)



Below: Neuenburgersee utility of objects found median p/100m. Fragmented objects with no clear identification remain classified by size:

# median p/50m of all the water features
data_table = cg_t.pivot(columns=this_level, index="groupname", values=unit_label)

# aggregated values for the lake
data_table[this_feature["name"]]= sut.aggregate_to_group_name(fd, unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# the survey area columns
data_table[bassin_label] = sut.aggregate_to_group_name(a_data[a_data.river_bassin == this_bassin], unit_label=unit_label, column="groupname", name=bassin_label, val="med")

# column for all the surveys
data_table[top] = sut.aggregate_to_group_name(a_data, unit_label=unit_label, column="groupname", name=top, val="med")

# merge with data_table
data = data_table

fig, ax = plt.subplots(figsize=(11,10))

axone = ax
sns.heatmap(data , ax=axone, cmap=cmap2, annot=True, annot_kws={"fontsize":12}, fmt="g", cbar=False, linewidth=.1, square=True, linecolor="white")

axone.set_xlabel("")
axone.set_ylabel("")
axone.tick_params(labelsize=14, which="both", axis="both", labeltop=False, labelbottom=True)

plt.setp(axone.get_xticklabels(), rotation=90, fontsize=14)
plt.setp(axone.get_yticklabels(), rotation=0, fontsize=14)

plt.show()
_images/neuenburgersee_28_0.png

9.4. Annex

9.4.1. Fragmented foams and plastics by size

The table below contains the “Gfoam” and “Gfrags” components grouped for analysis. Objects labeled expanded foams are grouped as Gfoam and includes all expanded polystyrene foamed plastics > 0.5 cm. Plastic pieces and objects made of combined plastic and foamed plastic materials > 0.5 cm. are grouped for analysis as Gfrags.

Below: Neuenburgersee fragmented foams and plastics by size group.

# collect the data before aggregating foams for all locations in the survey area
# the codes for the foams
some_foams = ["G81", "G82", "G83", "G74"]

# the codes for the fragmented plastics
some_frag_plas = list(before_agg[before_agg.groupname == "plastic pieces"].code.unique())

# aggregate all the codes by loc_date and get the total quantity and the median pcs/m
fd_frags_foams = before_agg[(before_agg.code.isin([*some_frag_plas, *some_foams]))&(before_agg.location.isin(t["locations"]))].groupby(["loc_date","code"], as_index=False).agg(agg_pcs_quantity)
fd_frags_foams = fd_frags_foams.groupby("code").agg({unit_label:"median", "quantity":"sum"})

# add code description and format for printing
fd_frags_foams["item"] = fd_frags_foams.index.map(lambda x: code_description_map.loc[x])
fd_frags_foams["% of total"] = (fd_frags_foams.quantity/fd.quantity.sum()*100).round(2)
fd_frags_foams["% of total"] = fd_frags_foams["% of total"].map(lambda x: F"{x}%")
fd_frags_foams["quantity"] = fd_frags_foams["quantity"].map(lambda x: F"{x:,}")

# table data
data = fd_frags_foams[["item", unit_label, "quantity", "% of total"]]

fig, axs = plt.subplots(figsize=(11,len(data)*.7))
sut.hide_spines_ticks_grids(axs)

a_table = sut.make_a_table(axs, data.values,  colLabels=data.columns, colWidths=[.6, .13, .13, .13])
a_table.get_celld()[(0,0)].get_text().set_text(" ")


plt.show()
plt.tight_layout()
plt.close()
_images/neuenburgersee_31_0.png

9.4.2. The survey locations

# display the survey locations

disp_columns = ["latitude", "longitude", "city"]
disp_beaches = dfBeaches.loc[t["locations"]][disp_columns]
disp_beaches.reset_index(inplace=True)
disp_beaches.rename(columns={"slug":"location"}, inplace=True)
disp_beaches.set_index("location", inplace=True, drop=True)

disp_beaches
latitude longitude city
location
la-petite-plage 46.785054 6.656877 Yverdon-les-Bains
evole-plage 46.989477 6.923920 Neuchâtel
plage-de-serriere 46.984850 6.913450 Neuchâtel
plage-de-cheyres 46.818689 6.782256 Cheyres-Châbles
signalpain 46.786200 6.647360 Yverdon-les-Bains
pointe-dareuse 46.946190 6.870970 Boudry
pecos-plage 46.803590 6.636650 Grandson
nouvelle-plage 46.856646 6.848428 Estavayer
ruisseau-de-la-croix-plage 46.813920 6.774700 Cheyres-Châbles
hauterive-petite-plage 47.010797 6.980304 Hauterive (NE)
impromptu_cudrefin 46.964496 7.027936 Cudrefin

9.4.3. Inventory of items

pd.set_option("display.max_rows", None)

complete_inventory = code_totals[code_totals.quantity>0][["item", "groupname", "quantity","% of total","fail rate"]]
complete_inventory.sort_values(by="quantity", ascending=False)
item groupname quantity % of total fail rate
code
G27 Cigarette filters tobacco 936 19.40 93
Gfrags Fragmented plastics plastic pieces 675 13.99 95
Gfoam Expanded polystyrene infrastructure 348 7.21 72
G200 Glass drink bottles, pieces food and drink 340 7.05 84
G30 Food wrappers; candy, snacks food and drink 306 6.34 88
G941 Packaging films nonfood or unknown packaging non food 174 3.61 52
G117 Expanded foams < 5mm micro plastics (< 5mm) 162 3.36 27
G67 Industrial sheeting agriculture 127 2.63 72
G98 Diapers - wipes waste water 118 2.45 43
G177 Foil wrappers, aluminum foil food and drink 104 2.16 61
G95 Cotton bud/swab sticks waste water 89 1.84 63
G178 Metal bottle caps and lids food and drink 67 1.39 54
G89 Plastic construction waste infrastructure 64 1.33 52
G156 Paper fragments packaging non food 64 1.33 40
G112 Industrial pellets (nurdles) micro plastics (< 5mm) 62 1.28 36
G74 Insulation foams infrastructure 52 1.08 50
G186 Industrial scrap infrastructure 49 1.02 27
G33 Lids for togo drinks plastic food and drink 42 0.87 50
G25 Tobacco; plastic packaging, containers tobacco 42 0.87 45
G50 String < 1cm recreation 39 0.81 43
G904 Plastic fireworks recreation 37 0.77 34
G21 Drink lids food and drink 36 0.75 34
G922 Labels, bar codes packaging non food 36 0.75 40
G923 Tissue, toilet paper, napkins, paper towels personal items 32 0.66 36
G203 Tableware ceramic or glass, cups, plates, pieces food and drink 30 0.62 22
G35 Straws and stirrers food and drink 30 0.62 40
G32 Toys and party favors recreation 30 0.62 43
G93 Cable ties; steggel, zip, zap straps infrastructure 27 0.56 27
G211 Swabs, bandaging, medical personal items 26 0.54 34
G10 Food containers single use foamed or plastic food and drink 26 0.54 27
G106 Plastic fragments angular <5mm micro plastics (< 5mm) 24 0.50 25
G23 Lids unidentified packaging non food 24 0.50 29
G66 Straps/bands; hard, plastic package fastener infrastructure 22 0.46 36
G191 Wire and mesh agriculture 20 0.41 18
G100 Medical; containers/tubes/ packaging waste water 20 0.41 34
G31 Lollypop sticks food and drink 19 0.39 31
G22 Lids for chemicals, detergents (non-food) infrastructure 18 0.37 20
G152 Cigarette boxes, tobacco related paper/cardboard tobacco 17 0.35 18
G24 Plastic lid rings food and drink 16 0.33 20
G96 Sanitary-pads/tampons, applicators waste water 16 0.33 22
G3 Plastic bags, carier bags packaging non food 16 0.33 20
G153 Cups, food containers, wrappers (paper) food and drink 15 0.31 20
G908 Tape; electrical, insulating infrastructure 13 0.27 18
G131 Rubber bands personal items 12 0.25 20
G26 Cigarette lighters tobacco 12 0.25 20
G125 Balloons and balloon sticks recreation 11 0.23 20
G905 Hair clip, hair ties, personal accessories pl... personal items 11 0.23 20
G137 Clothing, towels & rags personal items 11 0.23 13
G28 Pens, lids, mechanical pencils etc. personal items 11 0.23 13
G175 Cans, beverage food and drink 11 0.23 20
G91 Biomass holder waste water 10 0.21 9
G87 Tape, masking/duct/packing infrastructure 10 0.21 18
G73 Foamed items & pieces (non packaging/insulatio... recreation 10 0.21 18
G158 Other paper items packaging non food 10 0.21 4
G165 Ice cream sticks, toothpicks, chopsticks food and drink 10 0.21 15
G198 Other metal pieces < 50cm infrastructure 9 0.19 11
G928 Ribbons and bows personal items 8 0.17 9
G194 Cables, metal wire(s) often inside rubber or p... infrastructure 8 0.17 13
G167 Matches or fireworks recreation 8 0.17 2
G134 Other rubber unclassified 8 0.17 11
G210 Other glass/ceramic unclassified 7 0.15 4
G146 Paper, cardboard packaging non food 7 0.15 4
G70 Shotgun cartridges recreation 7 0.15 13
G208 Glass or ceramic fragments > 2.5 cm unclassified 7 0.15 6
G142 Rope , string or nets recreation 7 0.15 13
G201 Jars, includes pieces food and drink 6 0.12 9
G213 Paraffin wax recreation 6 0.12 9
G149 Paper packaging packaging non food 6 0.12 4
G7 Drink bottles < = 0.5L food and drink 6 0.12 9
G204 Bricks, pipes not plastic infrastructure 6 0.12 11
G124 Other plastic or foam products unclassified 5 0.10 9
G939 Flowers, plants plastic personal items 5 0.10 6
G940 Foamed EVA for crafts and sports recreation 5 0.10 4
G90 Plastic flower pots agriculture 5 0.10 9
G126 Balls recreation 5 0.10 6
G4 Small plastic bags; freezer, zip-lock etc. packaging non food 5 0.10 4
G918 Safety pins, paper clips, small metal utility ... personal items 5 0.10 9
G135 Clothes, footware, headware, gloves personal items 5 0.10 9
G919 Nails, screws, bolts etc. infrastructure 5 0.10 6
G929 Electronics and pieces; sensors, headsets etc. personal items 4 0.08 6
G938 Toothpicks, dental floss plastic food and drink 4 0.08 9
G2 Bags packaging non food 4 0.08 6
G68 Fiberglass fragments infrastructure 4 0.08 6
G942 Plastic shavings from lathes, CNC machining unclassified 4 0.08 6
G914 Paperclips, clothespins, plastic utility items personal items 4 0.08 9
G159 Corks food and drink 4 0.08 9
G901 Mask medical, synthetic personal items 4 0.08 9
G48 Rope, synthetic recreation 4 0.08 9
G34 Cutlery, plates and trays food and drink 4 0.08 6
G921 Ceramic tile and pieces infrastructure 4 0.08 9
G99 Syringes - needles personal items 3 0.06 6
G20 Caps and lids packaging non food 3 0.06 6
G101 Dog feces bag personal items 3 0.06 4
G38 Coverings; plastic packaging, sheeting for pro... unclassified 3 0.06 4
G11 Cosmetics for the beach, e.g. sunblock recreation 3 0.06 6
G933 Bags, cases for accessories; glasses, electron... personal items 3 0.06 4
G936 Sheeting ag. greenhouse film agriculture 3 0.06 4
G945 Razor blades personal items 3 0.06 6
G104 Plastic fragments subrounded <5mm micro plastics (< 5mm) 3 0.06 4
G931 Tape-caution for barrier, police, construction... infrastructure 2 0.04 4
G915 Reflectors, plastic mobility items personal items 2 0.04 2
G925 Packets: desiccant/ moisture absorbers, plasti... packaging non food 2 0.04 4
G157 Paper packaging non food 2 0.04 4
G926 Chewing gum, often contains plastics food and drink 2 0.04 2
G181 Tableware metal; cups, cutlery etc. food and drink 2 0.04 4
G115 Foamed plastic <5mm micro plastics (< 5mm) 2 0.04 2
G59 Fishing line monofilament (angling) recreation 2 0.04 2
G148 Cardboard (boxes and fragments) packaging non food 2 0.04 4
G102 Flip-flops personal items 2 0.04 4
G170 Wood (processed) agriculture 2 0.04 2
G29 Combs, brushes and sunglasses personal items 2 0.04 4
G197 Other metal infrastructure 2 0.04 4
G39 Gloves personal items 2 0.04 2
G136 Shoes personal items 2 0.04 4
G182 Fishing; hooks, weights, lures, sinkers etc. recreation 2 0.04 4
G71 Shoes sandals personal items 2 0.04 2
G8 Drink bottles > 0.5L food and drink 2 0.04 4
G161 Processed timber agriculture 2 0.04 4
G943 Fencing agriculture, plastic agriculture 1 0.02 2
G103 Plastic fragments rounded <5mm micro plastics (< 5mm) 1 0.02 2
G154 Newspapers or magazines personal items 1 0.02 2
G930 Foam earplugs personal items 1 0.02 2
G94 Table cloth recreation 1 0.02 2
G155 Fireworks paper tubes and fragments recreation 1 0.02 2
G144 Tampons waste water 1 0.02 2
G927 String trimmer line, used to cut grass, weeds,... infrastructure 1 0.02 2
G60 Light sticks recreation 1 0.02 2
G195 Batteries - household personal items 1 0.02 2
G14 Engine oil bottles unclassified 1 0.02 2
G176 Cans, food food and drink 1 0.02 2
G17 Injection gun cartridge infrastructure 1 0.02 2
G133 Condoms incl. packaging waste water 1 0.02 2
G13 Bottles, containers, drums to transport, store... agriculture 1 0.02 2
G40 Gloves household/gardening personal items 1 0.02 2
G64 Fenders unclassified 1 0.02 2
G107 Cylindrical pellets < 5mm micro plastics (< 5mm) 1 0.02 2
G65 Buckets agriculture 1 0.02 2
G119 Sheetlike user plastic (>1mm) micro plastics (< 5mm) 1 0.02 2
G84 CD or CD box personal items 1 0.02 2
G902 Mask medical, cloth personal items 1 0.02 2
G903 Hand sanitizer containers & packets personal items 1 0.02 2
G111 Spheruloid pellets < 5mm micro plastics (< 5mm) 1 0.02 2
G916 Pencils and pieces personal items 1 0.02 2
G52 Nets and pieces recreation 1 0.02 2